Как подключить жесткий диск от ноутбука к компьютеру. Интерфейсы современных жестких дисков

Существует два принци­пиально разных интерфейса - IDE (он же АТА) и SCSI (Small Computer System Interface, системный интерфейс малых компьютеров).

Интерфейс IDE (ATA)

Основной интерфейс, используемый для подключения жесткого диска к современному PC, называется IDE (IntegratedDrive Electronics). Фактически он представляет собой связь между системной платой и электроникой или контроллером, встроенными в накопитель. Этот интерфейс постоянно развивается - в настоящее время существует несколько его модификаций.

Интерфейс IDE, широко используемый в запоминающих устройствах современных компьютеров, разрабатывался как интерфейс жесткого диска. Однако сейчас он использу­ется для поддержки не только жестких дисков, но и многих других устройств, например накопителей на магнитной ленте, CD/DVD-ROM

На данный момент утверждены следующие стандарты ATA:

Стандарт PIO DMA UDMA Быстродействие Мбайт/с Свойства
ATA-1 0-2 - 8.33
ATA-2 (Fast-ATA, Fast-ATA-2 или EIDE) 0-4 0-2 - 16.67 Трансляция CHS / LBA для работы с дисками емкостью до 8,4 Гбайт
ATA-3 0-4 0-2 - 16.67 Поддержка технологии S.M.A.R.T.
ATA-4 (Ultra-ATA/33) 0-4 0-2 0-2 33.33 Режимы Ultra-DMA, поддержка дисков емкостью до 137,4 Гбайт на уровне BIOS. Включен режим Bus Mastering
ATA-5 (Ultra-ATA/66) 0-4 0-2 0-4 66.67 Режимы Faster UDMA, новый 80-контактный кабель с автоопределением
ATA-6 (Ultra-ATA/100) 0-4 0-2 0-5 100.00 Режим UDMA с быстродействием 100 Мбайт/с; поддержка дисков емкостью до 144 Пбайт на уровне BIOS
ATA-7 (Ultra-ATA/133) 0-4 0-2 0-6 133.00 Режим UDMA с быстродействием 133 Мбайт/с

РIO (Programmed Input/Output) - наиболее "старый" способ передачи данных по интерфейсу АТА. Программированием работы в этом случае занимается центральный процессор. Существует несколько режимов РIO, различающихся макси­мальной скоростью пакетной передачи данных: Mode 0 = 3,3; Mode 1 = 5,2; Mode 2 = 8,3; Mode 3 = 11,11 и Mode 4 = 16,67 Мбайт/с.

DMA (Direct Memory Access) - прямой доступ к памяти. Это специальный протокол, который позволяет устройству копировать данные в оперативную память без участия ЦП. Существует несколько режимов: DMA Mode 0 = 4,17; DMA Mode 1 = 13,33 и DMA Mode 2 = 16,63 Мбайт/с.



Ultra DMA поддерживается всеми современными жесткими дисками. Имеются следующие режимы: UDMA0=16.67, UDMA1=25, UDMA2=33.33, UDMA3=44.44, UDMA4=66.67, UDMA5=100, UDMA0=133 Мбайт/с,

Block mode - блочный метод передачи данных. Позволяет за один тактирующий импульс передать блок данных (адресов), что уменьшает нагрузку на центральный процессор и увеличивает быстродействие интерфейса.

Bus-Mastering - режим работы, при котором устройство способно "захватывать" управление шиной. В момент захвата всем остальным устройствам приходится ожидать, пока операция чтения/записи, инициированная контроллером винчестера, не закончится.

S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology) - технология заключается в создании механизма предсказания возможного выхода из строя жесткою диска, благодаря чему предотвращается потеря данных. При этом часть электронной схемы контроллера постоянно занята ведением ста­тистики рабочих параметров. Вся информация со­храняется в микросхеме Flash-памяти и в любой момент может быть ис­пользована программами анализа.

ИНТЕРФЕЙС ATAPI (ATA PACKET INTERFACE)

ATAPI (АТА Packet Interface) -модификация интерфейса АТА, позволяющая кроме жесткого диска подключить к компьютеру любое другое устройство, имеющее интерфейс программно совместимый с IDE (EIDE). Представляет собой программную надстройку над одной из модификаций АТА, позволяющей ввести новые команды для организации работы, например, привода CD-ROM или Iomega Zip.

Интерфейс SATA (Serial ATA)

Serial ATA - стандарт поддерживает практически все накопители (винчестеры, приводы CD-ROM и DVD, флоппи-дисководы и т.д.). Serial АТА предусматривает работу при более низких напряжениях - 250 мВ (у обыч­ного канала IDE сигналы имеют напряжение 5 В), максимальная пропуск­ная способность увеличена до 1200 Мбит/с, количество проводов кабеля сокращено до семи и до метра увеличена его допустимая длина. Интерфейс допускает "горячее подключение" устройств.

Стандарт Обозначение Быстродействие Мбайт/с
SATA-150 SATA I
SATA-300 SATA II
SATA-600 SATA III

В интерфейсе используется узкий 7-жильный кабель с ключевы­ми разъемами шириной не более 14 мм (0,55 дюйма) на каждом конце. Подобная конструк­ция позволяет избежать проблем с циркуляцией воздуха, возникающих при использовании более широких кабелей стандарта ATA. Разъемы находятся только на концах кабелей. Кабели, в свою очередь, используются для соединения устрой­ства непосредственно с контроллером (обычно на системной плате). В последовательном интерфейсе перемычки главный/подчиненный не используются, так как каждый кабель поддерживает только одно устройство.

Очевидно, что через некоторое время Serial ATA (SATA), как фактический стандарт внутренних накопителей, полностью заменит параллельный интерфейс АТА.

Интерфейс ATA RAID

Избыточный массив независимых (или недорогих) дисковых накопителей (Redundant Array of Independent/Inexpensive Disks - RAID) разрабатывался в целях повышения отка­зоустойчивости и эффективности систем компьютерных запоминающих устройств. Тех­нология RAID была разработана в Калифорнийском университете в 1987 году. В ее основу был положен принцип использования нескольких дисков небольшого объема, взаимодей­ствующих друг с другом посредством специального программного и аппаратного обеспе­чения, в качестве одного диска большой емкости.

Избыточный массив независимых дисковых накопителей (RAID) обыч­но выполняется посредством платы контроллера RAID. Кроме того, реализация RAID может быть обеспечена с помощью соответствующего программного обеспечения (что, правда, не рекомендуется). Существуют следующие уровни RAID.

Уровень RAID 0 - расслоение. Содержимое файла записывается одновременно на несколько дисков матрицы, которая работает как один дисковод большой емкости. Этот уровень обеспечивает высокую скорость выполнения операций чтения/записи, но очень низкую надежность. Для реализации уровня необходимы, как минимум, два дисковода.

Уровень RAID 1 - зеркальное отражение. Данные, записанные на одном диске, дублируются на другом, что обеспечивает превосходную отказоустойчивость (при повреждении одного диска происходит считывание данных с другого диска). При этом заметного повышения эффективности матрицы по сравнению с отдельным дисководом не происходит. Для реализации уровня необходимы, как минимум, два дисковода.

Уровень RAID 2 -разрядный код коррекции ошибок. Одновременно происходит побитовое дробление данных и запись кода коррекции ошибок (ЕСС) на нескольких дисках. Этот уровень предназначен для запоминающих устройств, не поддерживающих ЕСС (все дисководы SCSI и ATA имеют встроенный внутренний код коррекции ошибок). Обеспечивает высокую скорость передачи данных и достаточную надежность матрицы. Для реализации этого уровня требуется несколько дисководов.

Уровень RAID 3 - расслоение с контролем четности. Объединение уровня RAID 0 с дополнительным дисководом, используемым для обработки информации контроля четности. Этот уровень фактически представляет собой видоизмененный уровень RAID 0, для которого характерно уменьшение общей полезной емкости матрицы при сохранении числа дисководов. Однако при этом достигается высокий уровень целостности данных и отказоустойчивости, так как в случае повреждения одного из дисков, данные могут быть восстановлены. Для реализации этого уровня необходи­ мы, как минимум, три дисковода (два или более для данных и один для контроля четности).

Уровень RAID 4 - cблокированные данные с контролем четности. Этот уровень подобен уровню RAID 3 и отличается только тем, что запись информации осуществляется на независимые дисководы в виде больших блоков данных, что приводит к увеличению скорости чтения больших файлов. Для реализации этого уровня необходимы, как минимум, три дисковода (два или более для данных и один для контроля четности).

Уровень RAID 5 - сблокированные данные с распределенным контролем четности. Этот уровень подобен RAID 4, но предполагает более высокую производительность, которая достигается за счет распределения системы контроля четности по категориям жестких дисков. Для реализации этого уровня необходимы, как минимум, три дисковода (два или более для данных и один для контроля четности).

Уровень RAID 6 - сблокированные данные с двойным распределенным контролем четности. Подобен уровню RAID 5 и отличается тем, что данные контроля четности записываются дважды, за счет использования двух различных схем контроля четности. Это обеспечивает более высокую надежность матрицы в случае множественных отказов дисковода. Для реализации этого уровня необходимы, как минимум, четыре дисковода (два или более для данных и два для контроля четности).

Например, опера­ционные системы Windows NT/2000 и XP Server поддерживают реализацию RAID на программном уровне, используя при этом как расслоение, так и зеркальное отображение данных. Для установки параметров и управления функциями RAID, а также восстановле­ния поврежденных данных в этих операционных системах используется программа Disk Administrator. Тем не менее при организации сервера, который должен сочетать в себе эф­фективность и надежность, лучше воспользоваться контроллерами ATA или SCSI RAID, аппаратно поддерживающими уровни RAID 3 или 5.

Интерфейс SCSI

Интерфейс является универсальным, т. е. подходит для под­ключения практически всех классов устройств: накопителей, сканеров и т. п.

1) Базовый интерфейс SCSI-1, представляет собой универсальный интерфейс для подключения внешних или внутренних устройств. Имея 8-разрядную шину данных, максимальная ско­рость которой достигает 5 Мбит/с, он способен практически одновременно работать с 7-ю устройствами. Используется 50-ти контактный кабель.

2) SCSI-2 - возможность расширения шины данных до 16 разрядов, что позволило увеличить пропускную способность до 10 Мбайт/с. Используются дополнительные расширения SCSI-2: Wide SCSI-2 (широкий SCSI), Fast SCSI-2 (быст­рый SCSI).

У Fast SCSI-2 за счет уменьшения различных временных задержек увеличена скорость передачи данных до 10 Мбайт/с (частота шины 10 МГц).

У Wide SCSI-2 добавлены новые команды, а поддержка контроля четности сделана обязательной. Скорость передачи данных до 20 Мбайт/с (частота шины 10 МГц). Разъем 68 контактов. Поддерживает 15 устройств.

3) SCSI-3 (Ultra Wide SCSI) - продолжение развития шины, которое позволило еще вдвое увеличить пропускную способность интерфейса (частота шины 20 МГц). При 8-битной организации скорость обмена составляет до 20 Мбит/с, а при 16-битной - до 40 Мбит/с.

4) SCSI-4 (Ultra 320) - скорость передачи данных до 320 Мбайт/с (частота шины 80 МГц). Разъем 68 контактов. Поддерживает 15 устройств.

5) SCSI-5 (Ultra 640) - скорость передачи данных до 640 Мбайт/с (частота шины 160 МГц). Разъем 68 контактов. Поддерживает 15 устройств.

На уровне электрических соединений интерфейс может выполняться в двух видах:

Линейный (Single Ended) - позволяет передавать сигналы относительно общего провода (с общим или раздельными обратными линиями).;

Каждое устройство на шине SCSI имеет свой идентификационный номер, который называется SCSI ID. Для подключения устройств необходим так называемый хост-адаптер (Host Adapter) - выполняет роль связу­ющего звена между шиной SCSI и системной шиной персонального компьютера. Шина SCSI взаимодействует не с самими устройствами (например, с жесткими дисками), а со встроенными в них контроллерами.

На данный момент самым распространенным интерфейсом является . SATA хоть и можно встретить в продаже, однако интерфейс уже считается устаревшим, к тому же уже начали поступать с .

Не стоит путать с SATA 3,0 Гбит/с, во втором случае речь идет об интерфейсе SATA 2, который имеет пропускную способность равную до 3,0 Гбит/с (у SATA 3 пропускная способность равна до 6 Гбит/с)

Интерфейс — устройство, передающее и преобразующее сигналы, от одного компонента оборудования к другому.

Виды интерфейса. PATA, SATA, SATA 2, SATA 3 и тд.

Накопители различных поколений использовали такие интерфейсы: IDE (ATA), USB, Serial ATA (SATA), SATA 2, SATA 3, SCSI, SAS, CF, EIDE, FireWire, SDIO и Fibre Channel.

IDE (АТА — Advanced Technology Attachment) — параллельный интерфейс подключения накопителей, именно поэтому был изменен (с выходом SATA ) на PATA (Parallel ATA). Раньше использовался для подключения винчестеров, но был вытеснен интерфейсом SATA. В настоящее время используется для подключения оптических накопителей.

SATA (Serial ATA) — последовательный интерфейс обмена данными с накопителями. Для подключения используется 8-pin разъем. Как и в случае с PATA – является устаревшим, и используется только для работы с оптическими накопителями. Стандарт SATA (SATA150) обеспечивал пропускную способность равную 150 МБ/с (1,2 Гбит/с).

SATA 2 (SATA300) . Стандарт SATA 2 увеличивал пропускную способность в двое, до 300 МБ/с (2,4 Гбит/с), и позволяет работать на частоте 3 ГГц. Стандартны SATA и SATA 2 совместимы между собой, однако для некоторых моделей необходимо вручную устанавливать режимы, переставляя джамперы.

Хотя про требованию спецификаций правильно называть SATA 6Gb/s . Этот стандарт в двое увеличил скорость передачи данных до 6 Гбит/с (600 МБ/с). Также к положительным нововведениям относится функция программного управления NCQ и команды для непрерывной передачи данных для процесса с высоким приоритетом.

Хоть интерфейс и был представлен в 2009 году, особой популярностью у производителей он пока не пользуется и в магазинах встречает не так часто. Кроме жестких дисков этот стандарт используется в SSD (твердотельные диски).

Стоит заметить, что на практике пропускная способность интерфейсов SATA не отличаются скоростью передачи данных. Практически скорость записи и чтения дисков не превышает 100 Мб/с. Увеличение показателей влияет только пропускную способность между контроллером и накопителя.

SCSI(Small Computer System Interface) — стандарт применяется в серверах, где необходима повышеная скорость передачи данных.
SAS (Serial Attached SCSI) — поколение пришедшее на смену стандарта SCSI, использующее последовательную передачу данных. Как и SCSI используется в рабочих станциях. Полностью совместив с интерефейсом SATA.
CF (Compact Flash) — Интерфейс для подключения карт памяти, а также для 1,0 дюймовых винчестеров. Различают 2 стандарта: Compact Flash Type I и Compact Flash Type II, отличие в толщине.

FireWire – альтернативный интерфейс более медленному USB 2.0. Используется для подключения портативных . Поддерживает скорость до 400 Мб/с, однако физическая скорость ниже, чем у обычных. При чтении и записи максимальный порг 40 Мб/с.

Интерфейсом накопителей называется набор электроники, обеспечивающий обмен информацией между контроллером устройства (кеш-буфером) и компьютером. В настоящее время в настольных ПК IBM-PC, чаще других, используются две разновидности интерфейсов ATAPI - AT Attachment Packet Interface (Integrated Drive Electronics - IDE, Enhanced Integrated Drive Electronics - EIDE) и SCSI (Small Computers System Interface).

Интерфейс IDE разрабатывался как недорогая и производительная альтернатива высокоскоростным интерфейсам ESDI и SCSI. Интерфейс, предназначен для подключения двух дисковых устройств. Отличительной особенностью дисковых устройств, работающих с интерфейсом IDE состоит в том, что собственно контроллер дискового накопителя располагается на плате самого накопителя вместе со встроенным внутренним кэш-буфером. Такая конструкция существенно упрощает устройство самой интерфейсной карты и дает возможность размещать ее не только на отдельной плате адаптера, вставляемой в разъем системной шины, но и интегрировать непосредственно на материнской плате компьютера. Интерфейс характеризуется чрезвычайной простотой, высоким быстродействием, малыми размерами и относительной дешевизной.

Схемы сопряжения адаптера с накопителями в интерфейсе IDE

Сегодня на смену интерфейсу IDE пришло детище фирмы Western Digital - Enhanced IDE, или сокращенно EIDE. Сейчас это лучший вариант для подавляющего большинства настольных систем. Жесткие диски EIDE заметно дешевле аналогичных по емкости SCSI-дисков и в однопользовательских системах не уступают им по производительности, а большинство материнских плат имеют интегрированный двухканальный контроллер для подключения четырех устройств. Что же появилось нового в Enhanced IDE по сравнению с IDE ?

Во-первых, это большая емкость дисков. Если IDE не поддерживал диски свыше 528 мегабайт, то EIDE поддерживает объемы до 8.4 гигабайта на каждый канал контроллера.

Во-вторых, к нему подключается больше устройств - четыре вместо двух. Раньше имелся только один канал контроллера, к которому можно было подключить два IDE устройства. Теперь таких каналов два. Основной канал, который обычно стоит на высокоскоростной локальной шине и вспомогательный.

В-третьих, появилась спецификация ATAPI (AT Attachment Packet Interface) дающая возможность подключения к этому интерфейсу не только жестких дисков, но и других устройств - стриммеров и дисководов CD-ROM.

В-четвертых - повысилась производительность. Накопители с интерфейсом IDE характеризовались максимальной скоростью передачи данных на уровне 3 мегабайт в секунду. Жесткие диски EIDE поддерживают несколько новых режимов обмена данными. В их число входит режим программируемого ввода-вывода PIO (Programmed Input/Output) Mode 3 и 4, которые обеспечивают скорость передачи данных 11.1 и 16.6 мегабайт в секунду соответственно. Программируемый ввод-вывод - это способ передачи данных между контроллером периферийного устройства и оперативной памятью компьютера посредством команд пересылки данных и портов ввода/вывода центрального процессора.

В пятых, поддерживается режим прямого доступа к памяти - Multiword Mode 1 DMA (Direct Memory Access) или Multiword Mode 2 DMA и Ultra DMA, которые поддерживают обмен данными в монопольном режиме (то есть когда канал ввода-вывода в течение некоторого времени обслуживает только одно устройство). DMA - это еще один путь передачи данных от контроллера периферийного устройства в оперативную память компьютера, от PIO он отличается тем, что центральный процессор ПК не задействуется и его ресурсы остаются свободными для других задач. Периферийные устройства обслуживает специальный контроллер DMA. Скорость при этом достигает 13.3 и 16.6 мегабайта в секунду, а при использовании Ultra DMA и соответствующего драйвера шины - 33 мегабайт в секунду. EIDE-контроллеры используют механизм PIO точно так же, как это делают и некоторые SCSI-адаптеры, но скоростные адаптеры SCSI работают только по методу DMA.

В шестых - расширена система команд управления устройством, передачи данных и диагностики, увеличен кеш-буфер обмена данными и существенно доработана механика.

Фирмы Seagate и Quantum вместо спецификации EIDE используют спецификацию Fast ATA для накопителей, поддерживающих режимы PIO Mode 3 и DMA Mode 1, а работающие в режимах PIO Mode 4 и DMA Mode 2 обозначают как Fast ATA-2.

Интеллектуальный многофункциональный интерфейс SCSI был разработан еще в конце 70-х годов в качестве устройства сопряжения компьютера и интеллектуального контроллера дискового накопителя. Интерфейс SCSI является универсальным и определяет шину данных между центральным процессором и несколькими внешними устройствами, имеющими свой контроллер. Помимо электрических и физических параметров, определяются также команды, при помощи которых, устройства, подключенные к шине осуществляют связь между собой. Интерфейс SCSI не определяет детально процессы на обеих сторонах шины и является интерфейсом в чистом виде. Интерфейс SCSI поддерживает значительно более широкую гамму периферийных устройств и стандартизован ANSI (X3.131-1986).

Сегодня применяются в основном два стандарта - SCSI-2 и Ultra SCSI. В режиме Fast SCSI-2 скорость передачи данных доходит до 10 мегабайт в секунду при использовании 8-разрядной шины и до 20 мегабайт при 16-разрядной шине Fast Wide SCSI-2. Появившийся позднее стандарт Ultra SCSI отличается еще большей производительностью - 20 мегабайт в секунду для 8-разрядной шины и 40 мегабайт для 16-разрядной. В новейшем SCSI-3 увеличен набор команд, но быстродействие осталось на том же уровне. Все применяющиеся сегодня стандарты совместимы с предыдущими версиями

Сопряжение внешних устройств в интерфейсе SCSI

сверху - вниз, то есть к адаптерам SCSI-2 и Ultra SCSI можно подключить старые SCSI-устройства. Интерфейс SCSI-Wide, SCSI-2, SCSI-3 - стандарты модификации интерфейса SCSI, разработаны комитетом ANSI. Общая концепция усовершенствований направлена на увеличение ширины шины до 32-х, с увеличением длинны соединительного кабеля и максимальной скорости передачи данных с сохранением совместимости с SCSI. Это наиболее гибкий и стандартизованный тип интерфейсов, применяющийся для подключения 7 и более периферийных устройств, снабженных контроллером интерфейса SCSI. Интерфейс SCSI остается достаточно дорогим и самым высокопроизводительным из семейства интерфейсов периферийных устройств персональных компьютеров, а для подключения накопителя с интерфейсом SCSI необходимо дополнительно устанавливать адаптер, т.к. немногие материнские платы имеют интегрированный адаптер SCSI.

SATA (Serial — ATA , Serial Advanced Technology Attachment ) – разновидность интерфейса компьютерной шины, предназначенный для подключения к шине устройств, оптических приводов, и других.

Был разработан и представлен в 2003 году, как замена ныне устаревшему интерфейсу ATA (AT Attachment ), также известный как IDE . Позже, ATA был переименован в PATA (Parallel ATA , для лучшей узнаваемости и избегания путаницы.

Была создана организация под названием SATA —IO (Sata International Organization ), которая отвечает за развитие, поддержку, и публикацию новых спецификаций как для SATA , так и для SAS (Serial Attached SCSI ).



Преимущества нового интерфейса в сравнении со старым были как физические :уменьшенные габариты разъёмов, шлейфов и меньшее количество контактных ножек (7 против 40 ); так и технические : нативная поддержка «горячей замены » (замена не активного устройства), более быстрая передача данных на более высоких скоростях , увеличенная эффективность очереди команд вводавывода (I O ). Позже, с приходом режима , появилась поддержка технологии .

Теоретически, последовательный порт медленнее параллельного, но повышения скорости удалось добиться благодаря высокой частоте функционирования . Частоту удалось поднять благодаря отсутствию необходимости синхронизации данных, а также большей защищённости кабеля от помех (толще проводник, меньше помех).

В 2008 году, более 90% новых настольных компьютеров использовали для подключения периферии SATA разъём. PATA всё ещё можно приобрести, но продаются они лишь для сохранения совместимости со старыми дисками и материнскими платами.

Ревизии SATA :

SATA 1. x

Первая ревизияинтерфейса предусматривает частоту функционирования 1.5 Ггц , что обеспечивает полосу пропускания 1.5 Гбит/с . Около 20% отнимается на нужды системы кодирования типа 8 b 10 b , где в каждые 10 бит вкладывается ещё 2 бита служебной информации. Таким образом, максимальная скорость равняется 1.2 Гбит/с (150 Мб/с ). Это совсем немного быстрее самой быстрой PATA /133 , но намного лучшее быстродействие достигается в режиме AHCI , где работает поддержка NCQ (Native Command Queuing ). Это значительно улучшает производительность в много-поточных задачах, но не все контроллёры поддерживают AHCI на первой версии SATA .

SATA 2. x

Частота функционирования была увеличена до 3.0 Ггц , что увеличило пропускную способность до 3.0 Гбит/с . Эффективная пропускная способность равняется 2.4Гбит/с (300Мб/ c ), то есть в 2 раза выше чем у SATA 1 . Совместимость между первой и второй ревизией сохранилась. Интерфейсные кабели тоже были сохранены прежние и полностью совместимы между собой.

SATA 3.0

В июле 2008 года, SATA — IO представила спецификации SATA 3.0 , с пропускной способностью 6 Гбит / с . Полный 3.0 стандарт был выпущен в Мае 2009 года.

Эффективная пропускная способность составила 600Мб/с , а частота функционирования 6.0Ггц (то есть поднята только частота). Совместимость сохранилась как в методе передачи данных, так и в разъёмах и проводах; улучшено управление питанием.

Основной сферой применения, где требовалась такая пропускная способность – SSD (твёрдотельные) накопители. Для жёстких дисков, такая пропускная способность не требовалась. Выигрыш для них был в более высокой скорости передачи данных из кэш (DRAM — cache ) памяти диска.

SATA 3.1

Изменения:

  • · Появился mSATA , подобный (и совместимый) разъём для твёрдотельных накопителей и устройств ноутбуков, совмещённый с питающей линией малой мощности.
  • · Оптические приводы, поддерживающие стандарт, больше не потребляют энергии (совсем) в режиме простоя .
  • · Добавлена аппаратная команда очереди , улучшающая производительность и долговечность SSD .
  • · Аппаратные функции идентификации , определяющие возможности устройства.
  • · Расширенный менеджмент питания , позволяющий устройствам подключенным через SATA 3.1 потреблять меньше энергии .

A dvanced H ost C ontroller I nterface


Открытый хост-интерфейс, предложенный Intel , ставший стандартом. Является более предпочтительным интерфейсом для устройств SATA . Позволяет использовать такие команды SATA как Hot plug (горячая замена), NCQ (Native Command Queuing ). Если в настройках материнской платы не выставлен режим AHCI , то используется «эмуляция IDE » и не поддерживаются новые функции SATA . Версии Windows (практически все) установленные в режиме IDE , не смогут запуститься, если запустить систему с установками AHCI . Для этого потребуются специальные драйвера AHCI , установленные в системе.

e SATA


Портативная разновидность интерфейса Sata , скорость передачи которого выше чем у 2.0 и IEEE 1394 .

Основные изменения в сравнении с SATA :

  • · Разъёмы экранированы и более стойкие для многоразового подключения.
  • · Изменена компенсация потерь сигналов, что позволило увеличить максимальную длину кабеля до 2-х метров.
  • · Требует подключения 2-х разъёмов, один питания , второй интерфейсный .

eSATAp


– усовершенствованный разъём e — Sata , но с питанием от разъёма. Благодаря этому, e — Sata становится полноценным портативным и универсальным интерфейсом. С выходом USB 3.0 , оказался обделён вниманием, так как USB предлагает более простую реализацию .

mSATA


PCI e подобный интерфейс, представленный в Сентябре 2009 года. Предназначен для миниатюрных устройств (твёрдотельных накопителей, портативных жёстких дисков). Также планируется использование в таких портативных устройствах как ноутбуки, и других . Устройства с данным интерфейсом, могут иметь очень миниатюрные размеры , сходные с картами расширения для ноутбуков (к примеру).

Существуют переходники Pata Sata , Sata Pata .



Они позволяют подключать устройства с разными интерфейсами, которые эмулируются специальным контроллёром на переходнике. Абсолютное большинство переходников требуют дополнительного питания с блока питания (обычно типа «molex » или 5V разъём для дисководов).

Жёсткий диск - простая и маленькая "коробочка" с виду, хранящая огромные объёмы информации в компьютере любого современного пользователя.

Именно таковой она кажется снаружи: достаточно незамысловатой вещицей. Редко кто при записи, удалении, копировании и прочих действий с файлами различной важности задумывается о принципе взаимодействия жёсткого диска с компьютером. А если ещё точнее - непосредственно с самой материнской платой.

Как эти компоненты связаны в единую бесперебойную работу, каким образом устроен сам жесткий диск, какие разъемы подключения у него есть и для чего каждый из них предназначен - это ключевая информация о привычном для всех устройстве хранения данных.

Интерфейс HDD

Именно этим термином можно корректно называть взаимодействие с материнской платой. Само же слово имеет гораздо более широкое значение. К примеру, интерфейс программы. В этом случае подразумевается та часть, которая обеспечивает способ взаимодействия человека с ПО (удобный «дружелюбный» дизайн).

Однако же рознь. В случае с HDD и материнской платой он представляет не приятное графическое оформление для пользователя, а набор специальных линий и протоколов передачи данных. Друг к другу эти компоненты подключаются при помощи шлейфа - кабеля со входами на обоих концах. Они предназначены для соединения с портами на жёстком диске и материнской плате.

Иными же словами, весь интерфейс на этих устройствах - два кабеля. Один подключается в разъем питания жесткого диска с одного конца и к самому БП компьютера с другого. А второй из шлейфов соединяет HDD с материнской платой.

Как в былые времена подключали жёсткий диск - разъем IDE и другие пережитки прошлого

Самое начало, после которого появляются более совершенные интерфейсы HDD. Древний по нынешним меркам появился на рынке примерно в 80-х годах прошлого столетия. IDE дословно в переводе означает «встроенный контроллер».

Будучи параллельным интерфейсом данных, его ещё принято называть ATA - Однако стоило со временем появиться новой технологии SATA и завоевать гигантскую популярность на рынке, как стандартный ATA был переименован в PATA (Parallel ATA) во избежание путаниц.

Крайне медленный и совсем уж сырой по своим техническим возможностям, этот интерфейс в годы своей популярности мог пропускать от 100 до 133 мегабайта в секунду. И то лишь в теории, т. к. в реальной практике эти показатели были ещё скромнее. Конечно же, более новые интерфейсы и разъемы жестких дисков покажут ощутимое отставание IDE от современных разработок.

Думаете, не стоит преуменьшать и привлекательных сторон? Старшие поколения наверняка помнят, что технические возможности PATA позволяли обслуживать сразу два HDD при помощи только одного шлейфа, подключаемого к материнской плате. Но пропускная способность линии в таком случае аналогично распределялась пополам. И это уже не упоминая ширины провода, так или иначе препятствующую своими габаритами потоку свежего воздуха от вентиляторов в системном блоке.

К нашему времени IDE уже закономерно устарел как в физическом, так и в моральном плане. И если до недавнего времени этот разъём встречался на материнских платах низшего и среднего ценового сегмента, то теперь сами производители не видят в нём какой-либо перспективы.

Всеобщий любимец SATA

На длительное время IDE стал наиболее массовым интерфейсом работы с накопителями информации. Но технологии передачи и обработки данных долго на месте не застаивались, предложив вскоре концептуально новое решение. Сейчас его можно встретить практически у любого владельца персонального компьютера. И название ему - SATA (Serial ATA).

Отличительные особенности этого интерфейса - параллельная низкое энергопотребление (сравнительно с IDE), меньший нагрев комплектующих. За всю историю своей популярности SATA пережил развитие в три этапа ревизий:

  1. SATA I - 150 мб/c.
  2. SATA II - 300 мб/с.
  3. SATA III - 600 мб/с.

К третьей ревизии также была разработана пара обновлений:

  • 3.1 - более усовершенствованная пропускная способность, но всё так же ограниченная лимитом в 600 мб/с.
  • 3.2 со спецификацией SATA Express - успешно реализованное слияние SATA и PCI-Express устройств, позволившее увеличить скорость чтения/записи интерфейса до 1969 мб/с. Грубо говоря, технология является «переходником», который переводит обычный режим SATA на более скоростной, которым и обладают линии PCI-разъёмов.

Реальные же показатели, разумеется, явно отличались от официально заявленных. В первую очередь это обуславливает избыточная пропускная способность интерфейса - многим современным накопителям те же 600 мб/с излишне, т. к. они изначально не разработаны для работы на такой скорости чтения/записи. Лишь с течением времени, когда рынок постепенно будет полниться высокоскоростными накопителями с невероятными для сегодняшнего дня показателями скорости работы, технический потенциал SATA будет задействован в полном объёме.

И наконец, были доработаны многие физические аспекты. SATA рассчитан на использование более длинных кабелей (1 метр против 46 сантиметров, которыми подключались жесткие диски с разъемом IDE) с гораздо компактными размерами и приятным внешним видом. Обеспечена поддержка «горячей замены» HDD - подключать/отсоединять их можно и без отключения питания компьютера (правда, предварительно всё же необходимо активировать режим AHCI в BIOS).

Возросло и удобство подключения шлейфа к разъёмам. При этом все версии интерфейса обратно совместимы друг с другом (жёсткий диск SATA III без проблем подключается к II на материнской плате, SATA I - к SATA II и т. д.). Единственный нюанс - максимальная скорость работы с данными будет ограничена наиболее «старым» звеном.

Обладатели старых устройств также не останутся в стороне - существующие переходники с PATA на SATA переменно спасут от более дорогостоящей покупки современного HDD или новой материнской платы.

External SATA

Но далеко не всегда стандартный жёсткий диск подходит под задачи пользователя. Бывает необходимость в хранении больших объёмов данных, которым требуется использование в разных местах и, соответственно, транспортировка. Для таких случаев, когда с одним накопителем приходится работать не только лишь дома, и разработаны внешние жёсткие диски. В связи со спецификой своего устройства, им требуется совсем другой интерфейс подключения.

Таковым является ещё разновидность SATA, созданной под разъемы внешних жестких дисков, с приставкой external. Физически этот интерфейс не совместим со стандартными SATA-портами, однако при этом обладает аналогичной пропускной способностью.

Присутствует поддержка «горячей замены» HDD, а длина самого кабеля увеличена до двух метров.

В изначальном варианте eSATA позволяет лишь обмениваться информацией, без подачи в соответствующий разъем внешнего жесткого диска необходимой электроэнергии. Этот недостаток, избавляющий от необходимости использования сразу двух шлейфов для подключения, был исправлен с приходом модификации Power eSATA, совместив в себе технологии eSATA (отвечает за передачу данных) с USB (отвечает за питание).

Универсальная последовательная шина

Фактически став наиболее распространённым стандартом последовательного интерфейса подключения цифровой техники, Universal Serial Bus в наши дни известен каждому.

Перенеся долгую историю постоянных крупных изменений, USB - это высокая скорость передачи данных, обеспечение электропитанием беспрецедентное множество периферийных устройств, а также простота и удобство в повседневном использовании.

Разрабатываемый такими компаниями, как Intel, Microsoft, Phillips и US Robotics, интерфейс стал воплощением сразу нескольких технических стремлений:

  • Расширение функционала компьютеров. Стандартная периферия до появления USB была достаточно ограничена в разнообразии и под каждый тип требовался отдельный порт (PS/2, порт для подключения джойстика, SCSI и т. д.). С приходом USB задумывалось, что он и станет единой универсальной заменой, существенно упростив взаимодействие устройств с компьютером. Более того, предполагалось также этой новой для своего времени разработкой стимулировать появление нетрадиционных периферийных устройств.
  • Обеспечить подключение мобильных телефонов к компьютерам. Распространяющая в те годы тенденция перехода мобильных сетей на цифровую передачу голоса выявила, что ни одни из разработанных тогда интерфейсов не мог обеспечить передачу данных и речи с телефона.
  • Изобретение комфортного принципа «подключи и играй», пригодные для «горячего подключения».

Как и в случае с подавляющим большинством цифровой техники, USB-разъем для жесткого диска за долгое время стал полностью привычным для нас явлением. Однако в разные года своего развития этот интерфейс всегда демонстрировал новые вершины скоростных показателей чтения/записи информации.

Версия USB

Описание

Пропускная способность

Первый релизный вариант интерфейса после нескольких предварительных версий. Выпущен 15 января 1996 года.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с

Доработка версии 1.0, исправляющая множество её проблем и ошибок. Выпущенная в сентябре 1998 года, впервые получила массовую популярность.

Выпущенная в апреле 2000 года, вторая версия интерфейса располагает новым более скоростным режимом работы High-Speed.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с
  • Режим High-Speed: 25-480 Мбит/с

Новейшее поколение USB, получившее не только обновлённые показатели пропускной способности, но и выпускаемая в синем/красном цвете. Дата появления - 2008 год.

До 600 Мбайт в секунду

Дальнейшая разработка третьей ревизии, вышедшая в свет 31 июля 2013 года. Делится на две модификации, которые могут обеспечить любой жёсткий диск с USB-разъёмом максимальной скорость до 10 Гбит в секунду.

  • USB 3.1 Gen 1 - до 5 Гбит/с
  • USB 3.1 Gen 2 - до 10 Гбит/с

Помимо этой спецификации, различные версии USB реализованы и под разные типы устройств. Среди разновидностей кабелей и разъёмов этого интерфейса выделяют:

USB 2.0

Стандартный

USB 3.0 уже мог предложить ещё один новый тип - С. Кабели этого типа симметричны и вставляются в соответствующее устройство с любой стороны.

С другой стороны, третья ревизия уже не предусматривает Mini и Micro «подвиды» кабелей для типа А.

Альтернативный FireWire

При всей своей популярности, eSATA и USB - ещё не все варианты того, как подключить разъем внешнего жесткого диска к компьютеру.

FireWire - чуть менее известный в народных массах высокоскоростной интерфейс. Обеспечивает последовательное подключение внешних устройств, в поддерживаемое число которых также входит и HDD.

Его свойство изохронной передачи данных главным образом нашло своё применение в мультимедийной технике (видеокамеры, DVD-проигрыватели, цифровая звуковая аппаратура). Жёсткие диски им подключают гораздо реже, отдавая предпочтение SATA или более совершенному USB-интерфейсу.

Свои современные технические показатели эта технология приобретала постепенно. Так, исходная версия FireWire 400 (1394a) была быстрее своего тогдашнего главного конкурента USB 1.0 - 400 мегабит в секунду против 12. Максимально допустимая длина кабеля - 4.5 метра.

Приход USB 2.0 оставил соперника позади, позволяя обменивать данные со скоростью 480 мегабит в секунду. Однако с выходом нового стандарта FireWire 800 (1394b), позволявший передавать 800 мегабит в секунду с максимальной длинной кабеля в 100 метров, USB 2.0 на рынке была менее востребована. Это спровоцировало разработку третьей версии последовательной универсальной шины, расширившей потолок обмена данных до 5 гбит/с.

Кроме этого, отличительной особенностью FireWire является децентрализованность. Передача информации через USB-интерфейс обязательно требует наличие ПК. FireWire же позволяет обмениваться данными между устройствами без обязательного привлечения компьютера к процессу.

Thunderbolt

Своё видение того, какой разъем жесткого диска должен в будущем стать безоговорочным стандартом, показала компания Intel совместно с Apple, представив миру интерфейс Thunderbolt (или, согласно его старому кодовому названию, Light Peak).

Построенная на архитектурах PCI-E и DisplayPort, эта разработка позволяет передавать данные, видео, аудио и электроэнергию через один порт с по-настоящему впечатляющей скоростью - до 10 Гб/с. В реальных тестах этот показатель был чуть скромнее и доходил максимум до 8 Гб/с. Тем не менее даже так Thunderbolt обогнал свои ближайшие аналоги FireWire 800 и USB 3.0, не говоря уже и о eSATA.

Но столь же массового распространения эта перспективная идея единого порта и коннектора пока что не получила. Хотя некоторыми производителями сегодня успешно встраиваются разъемы внешних жестких дисков, интерфейс Thunderbolt. С другой стороны, цена за технические возможности технологии тоже сравнительно немалая, поэтому и встречается эта разработка в основном среди дорогостоящих устройств.

Совместимость с USB и FireWire можно обеспечить при помощи соответствующих переходников. Такой подход не сделает их более быстрыми в плане передачи данных, т. к. пропускная способность обоих интерфейсов всё равно останется неизменной. Преимущество здесь только одно - Thunderbolt не будет ограничивающим звеном при подобном подключении, позволив задействовать все технические возможности USB и FireWire.

SCSI и SAS - то, о чём слышали далеко не все

Ещё один параллельный интерфейс подключения периферийных устройств, сместивший в один момент акцент своего развития с настольных компьютеров на более широкий спектр техники.

«Small Computer System Interface» был разработан чуть ранее SATA II. К моменту выхода последнего, оба интерфейса по своим свойствам были практически идентичными друг другу, способные обеспечить разъем подключения жесткого диска стабильной работой с компьютеров. Однако SCSI использовал в работе общую шину, из-за чего с контроллером могло работать лишь одно из подключённых устройств.

Дальнейшая доработка технологии, которая приобрела новое название SAS (Serial Attached SCSI), уже была лишена своего прежнего недостатка. SAS обеспечивает подключение устройств с набором управляемых команд SCSI по физическому интерфейсу, который аналогичен тому же SATA. Однако более широкие возможности позволяют подключать не только лишь разъемы жестких дисков, но и многую другую периферию (принтеры, сканеры и т. д.).

Поддерживается «горячая замена» устройств, расширители шины с возможностью одновременного подключения нескольких SAS-устройств к одному порту, а также предусмотрена обратная совместимость с SATA.

Перспективы NAS

Интереснейший способ работы с большими объёмами данных, стремительно набирающий популярность в кругах современных пользователей.

Или же сокращённо NAS представляют собой отдельный компьютер с некоторым дисковым массивом, который подключен к сети (зачастую к локальной) и обеспечивает хранение и передачу данных среди других подключённых компьютеров.

Выполняя роль сетевого хранилища, к другим устройствам этот мини-сервер подключается по обыкновенному Ethernet-кабелю. Дальнейший доступ к его настройкам осуществляется через любой браузер с подключением к сетевому адресу NAS. Имеющиеся данные на нём можно использовать как по Ethernet-кабелю, так и при помощи Wi-Fi.

Эта технология позволяет обеспечить достаточно надёжный уровень хранения информации и предоставлять к ней удобный лёгкий доступ для доверенных лиц.

Особенности подключения жёстких дисков к ноутбукам

Принцип работы HDD со стационарным компьютером предельно прост и понятен каждому - в большинстве случаев требуется соответствующим кабелем соединить разъемы питания жесткого диска с блоком питания и аналогичным образом подключить устройство к материнской плате. При использовании внешних накопителей можно вообще обойтись всего одним шлейфом (Power eSATA, Thunderbolt).

Но как правильно использовать разъемы жестких дисков ноутбуков? Ведь иная конструкция обязывает учитывать и несколько иные нюансы.

Во-первых, для подключения накопителей информации прямиком «внутрь» самого устройства следует учитывать то, что форм-фактор HDD должен быть обозначен как 2.5”

Во-вторых, в ноутбуке жесткий диск подсоединяется к материнской плате напрямую. Без каких-либо дополнительных кабелей. Достаточно просто открутить на дне предварительно выключенного ноутбука крышку для HDD. Она имеет прямоугольный вид и обычно крепится парой болтов. Именно в ту ёмкость и нужно помещать устройство хранения.

Все разъемы жестких дисков ноутбуков абсолютно идентичны своим более крупным «собратьям», предназначенных для ПК.

Ещё один вариант подключения - воспользоваться переходником. К примеру, накопитель SATA III можно подключить к USB-портам, установленным на ноутбуке, при помощи переходного устройства SATA-USB (на рынке представлено огромное множество подобных устройств для самых разных интерфейсов).

Достаточно лишь подсоединить HDD к переходнику. Его, в свою очередь, подключить к розетке 220В для подачи электропитания. И уже кабелем USB соединить всю эту конструкцию с ноутбуком, после чего жесткий диск будет отображаться при работе как ещё один раздел.