Li-Ion или Li-Po: В Чем Различие и Что Выбрать. Как продлить жизненный цикл литий-ионных (Li-ion) аккумуляторов

Эксплуатация, зарядка, плюсы и минусы литиевых аккумуляторов

Очень многие сегодня используют электронные устройства в своей повседневной жизни. Сотовые телефоны, планшеты, ноутбуки… Все знают, что это такое. Но немногие знают, что ключевым элементом этих устройств является литиевый аккумулятор. Этим типом аккумуляторных батарей комплектуется практически каждое мобильное устройство. Сегодня мы поговорим о литиевых аккумуляторах. Эти АКБ и технология их производства постоянно развиваются. Существенное обновление технологии происходит раз в 1─2 года. Мы рассмотрим общий принцип работы литиевых батарей, а разновидностям будут посвящены отдельные материалы. Ниже будет рассмотрена история возникновения, эксплуатация, хранение, преимущества и недостатки литиевых аккумуляторов.

Исследования в этом направлении проводились ещё в начале 20 века. «Первые ласточки» в семействе литиевых аккумуляторов появились в начале семидесятых годов прошлого столетия. Анод этих батарей был выполнен из лития. Они быстро стали востребованы благодаря тому, что обладали высокой удельной энергией. Благодаря наличию лития, очень активного восстановителя, разработчикам удалось сильно нарастить номинальное напряжение и удельную энергию элемента. Разработка, последующие испытания и доводки технологии «до ума» заняли около двух десятков лет.


За это время решались в основном вопросы с безопасность использования литиевых аккумуляторов, подбором материалов и т. п. Вторичные литиевые элементы с апротонными электролитами и разновидность с твёрдым катодом похожи по электрохимическим процессам, протекающих в них. В частности, на минусовом электроде идёт анодное растворение лития. В кристаллическую решётку плюсового электрода идёт внедрение лития. Когда аккумуляторный элемент заряжается, то процессы на электродах идут в обратном направлении.

Материалы для плюсового электрода разработали достаточно быстро. Основное требование к ним было в том, чтобы на них проходило обратимые процессы.

Речь идёт об анодной экстракции и катодном внедрении. Эти процессы ещё называют анодным деинтеркалированием и катодным интеркалированием. Исследователи испытывали различные материалы в качестве катода.

Требование было в том, чтобы отсутствовали изменения при циклировании. В частности, изучались такие материалы, как:

  • TiS2 (дисульфид титана);
  • Nb(Se)n (селенид ниобия);
  • сульфиды и диселениды ванадия;
  • сульфиды меди и железа.

Все перечисленные материалы имеют слоистую структуру. Проводились исследования и с материалами более сложных составов. Для этого использовались добавки некоторых металлов в небольших количествах. Это были элементы имеющее катионы большего радиуса, чем у Li.

Высокие удельные характеристики катода были получены на оксидах металлов. Пробовались разные оксиды на предмет обратимой работы, которая зависит от степени искажения кристаллической решётки материала оксида, когда туда внедряются катионы лития. В расчёт принималась и электронная проводимость катода. Задача заключалась в том, чтобы обеспечить изменения объёма катода не более 20 процентов. Согласно исследованиям, наилучшие результаты показали оксиды ванадия и молибдена.



С анодом возникли главные сложности при создании литиевых аккумуляторов. Точнее в процессе зарядки, когда происходит катодное осаждение Li. При этом образуется поверхность с очень высокой активностью. Литий осаждается на поверхности катода в виде дендритов и в результате образуется пассивная плёнка.

Получается так, что эта плёнка обволакивает частицы лития и препятствует их контакту с основой. Этот процесс называется инкапсулированием и приводит к тому, что после зарядки аккумулятора определённая часть лития исключается из электрохимических процессов.

В итоге после определённого количества циклов, электроды изнашивались и нарушалась температурная стабильность процессов внутри литиевого аккумулятора.

В какой-то момент элемента разогревался до точки плавления Li и реакция переходила в неконтролируемую фазу. Так, в начале 90-х годов на предприятия компаний, занимавшихся их выпуском, возвратили много литиевых АКБ. Это были одни из первых аккумуляторов, которые стали применяться в мобильных телефонах. В момент разговора (ток достигает максимального значения) по телефону из этих батарей происходил выброс пламени. Было немало случаев, когда пользователю обжигало лицо. Образование дендритов при осаждении лития, помимо опасности пожара и взрыва, может приводить к короткому замыканию.

Поэтому исследователи потратили много времени и сил на разработку методом обработки поверхности катода. Разрабатывались способы введения в электролит добавок, препятствующих образованию дендритов. В этом направлении учёные достигли успехов, но полностью проблема не решена до сих пор. Эти проблемы с использованием металлического лития пытались решить и другим методом.

Так, отрицательный электрод стали изготавливать из литиевых сплавов, а не из чистого Li. Самым успешным оказался сплав лития и алюминия. Когда идёт процесс разряда, то в электроде из такого сплава вытравливается литий, а при заряде, наоборот. То есть, в процессе цикла заряд-разряд изменяется концентрация Li в сплаве. Конечно, произошла некоторая потеря активности лития в сплаве по сравнению с металлическим Li.

Потенциал электрода из сплава снизился где-то на 0,2─0,4 вольта. Рабочее напряжение литиевой батареи снизилось и одновременно уменьшилось взаимодействие электролита и сплава. Это стало положительным фактором, поскольку уменьшился саморазряд. Но сплав лития и алюминия не получил широкого распространения. Проблема здесь заключалась в том, что при циклировании сильно изменялся удельный объем этого сплава. Когда происходил глубокий разряд, то электрод охрупчивался и осыпался. Из-за снижения удельных характеристик сплава исследования в этом направлении были прекращены. Изучались и другие сплавы.


Как показали исследования, лучше всего подходят сплав Li с тяжёлыми металлами. Примером может служить сплав Вуда. Они хорошо показали себя в плане сохранения удельного объёма, но удельные характеристики оказались недостаточными для использования в литиевых аккумуляторах.

В результате из-за того, что металлический литий нестабилен, исследования стали вести в другом направлении. Было решено исключить из компонентов батареи литий в чистом виде, а использовать его ионы. Так появились литий─ионные (Li-Ion) аккумуляторы.

Энергетическая плотность литий─ионных АКБ меньше, чем у литиевых. Но безопасность и удобство эксплуатации у них значительно выше. Можете прочитать подробнее про по указанной ссылке.

Эксплуатация и срок службы

Эксплуатация

Правила эксплуатации будут рассмотрены на примере распространённых литиевых аккумуляторов, которые применяются в мобильных устройствах (телефонах, планшетах, ноутбуках). В большинстве случаев от «дурака» такие аккумуляторы защищает встроенный контроллер. Но пользователю полезно знать базовые вещи об устройстве, параметрах и эксплуатации литиевых АКБ.

Для начала следует запомнить, что литиевый аккумулятор должен иметь напряжением от 2,7 до 4,2 вольта. Нижнее значение здесь говорит о минимальном уровне заряда, верхнее – о максимальном. В современных Li батареях электроды выполняются из графита и в их случае нижняя граница напряжения составляет 3 вольта (2,7 – это значение для электродов из кокса). Электрическая энергия, которую отдаёт аккумулятор при падении напряжения от верхней границы к нижней, называется его ёмкостью.

Чтобы продлить срок службы литиевых аккумуляторов производители несколько сужают диапазон напряжения. Часто это 3,3─4,1 вольта. Как показывает практика, максимальный срок службы литиевых батарей достигается при уровне заряда 45 процентов. Если аккумулятор передерживать на зарядке или сильно разряжать, то срок эксплуатации сокращается. Обычно рекомендуется ставить литиевый аккумулятор заряжаться при 15─20% заряда. А прекращать зарядку надо сразу после достижения 100% ёмкости.

Но, как уже говорилось, от перезарядки и глубокого разряда аккумулятор спасает его контроллер. Эта управляющая плата с микросхемой имеется практически на всех литиевых аккумуляторных батареях. В различной потребительской электронике (планшет, смартфон, ноутбук) работу контроллера, интегрированного в АКБ, ещё дополняет микросхема, которая распаяна на плате самого устройства.

В общем, правильная эксплуатация литиевых аккумуляторов обеспечивается их контроллером. От пользователя в основном требуется не встревать в этот процесс и не заниматься самодеятельностью.

Срок службы

Срок службы литиевых аккумуляторных батарей составляет около 500 циклов заряд-разряд. Это значение справедливо для большинства современных литий─ионных и литий─полимерных аккумуляторов. По времени срок службы может быть разный. Это зависит от интенсивности использования мобильного устройства. При постоянном использовании, нагрузкой ресурсоёмкими приложениями (видео, игры) аккумулятор может исчерпать свой лимит за год. Но в среднем срок службы литиевых аккумуляторов составляет 3─4 года.

Процесс зарядки

Сразу стоит отметить, что для нормальной эксплуатации батареи, нужно использовать штатное зарядное устройство, которое поставляется в комплекте с гаджетом. В большинстве случаев это источник постоянного тока с напряжением 5 вольт. Штатные зарядки для телефона или планшета обычно отдают ток около 0,5─1 * С (С – номинальная ёмкость батареи).
Стандартным режимом зарядки литиевого аккумулятора считается следующий. Этот режим используется в контроллерах компании Sony и обеспечивает максимальную полноту зарядки. На рисунке ниже этот процесс представлен в графическом виде.



Процесс состоит из трёх этапов:

  • продолжительность первого этапа около одного часа. При этом ток зарядки держится на постоянном уровне до тех пор, пока напряжение АКБ не достигнет значения 4,2 вольта. По окончании степень заряженности равна 70%;
  • второй этап также идёт около часа. В это время контроллер поддерживает постоянное напряжение 4,2 вольта, а ток зарядки при этом снижается. Когда сила тока падает примерно до 0,2*C, запускается заключительный этап. По окончании степень заряженности равна 90%;
  • на третьем этапе ток постоянно снижается при напряжении 4,2 вольта. В принципе, эта стадия повторяет второй этап, но имеет строгое ограничение по времени в 1 час. После этого контроллер отключает батарею от зарядного устройства. По окончании степень заряженности равна 100%.

Контроллеры, которые способны обеспечить такую стадийность, стоят довольно дорого. Это отражается на стоимости аккумулятора. В целях удешевления многие производители устанавливают в аккумуляторы контроллеры с упрощённой системой заряда. Часто это бывает только первый этап. Зарядка прерывается при достижении напряжения 4,2 вольта. Но в этом случае литиевая батарея заряжается лишь на 70% от ёмкости. Если литиевый аккумулятор вашего устройства заряжается 3 часа и меньше, то, скорее всего, он имеет упрощённый контроллер.

Стоит отметить ещё ряд моментов. Периодически (раз в 2─3 месяца) делайте полный разряд АКБ (чтобы телефон отключился). Затем проводится полная зарядка до 100%. После этого вынимаете батарею на 1─2 минуты, вставляете и включаете телефон. Уровень заряда будет меньше 100%. Заряжаете полностью и так делаете несколько раз, пока при вставке батареи не будет показан полный заряд.


Помните, что через разъём USB ноутбука, десктопа, переходника от прикуривателя в машине зарядка идёт значительно медленнее, чем от штатного ЗУ. Это объясняется ограничением интерфейса USB по току в 500 мА.

Также помните о том, что на холоде и при низком атмосферном давлении литиевые аккумуляторы теряют часть своей ёмкости. При отрицательных температурах этот тип батарей становится неработоспособным.

Потребительский рынок литий-ионных (Li-ion) аккумуляторов огромен – около $10 млрд, при этом он довольно устойчив, темп роста составляет всего 2% в год. А как же электромобили, спросите вы? Действительно, в ближайшие годы, в связи развитием электромобилей, прогнозируется темп ежегодного роста литий-ионных аккумуляторов в 10%. На удивление, самой большой областью роста рынка Li-ion батарей по-прежнему остается «все остальное», начиная от мобильных телефонов и заканчивая вилочными погрузчиками.

«Другие» приложения для литий-ионных аккумуляторов, как правило, имеют одну общую черту – это устройства, которые получают питание от запечатанных свинцово-кислотных батарей (англ. sealed lead acid (SLA)). За последние почти 200 лет свинцово-кислотные батареи заняли лидирующую позицию на рынке электроники, но они вот уже несколько лет вытесняются с рынка литий-ионными аккумуляторами. Поскольку во многих случаях литий-ионные батареи стали заменять свинцово-кислотные батареи (аккумуляторы), стоит сравнить эти два вида накопителей энергии, подчеркнув основные технические особенности и экономическую целесообразность применения Li-ion вместо традиционных SLA устройств.

История применения аккумуляторных батарей

Свинцово-кислотная батарея – первая перезаряжаемая батарея, разработанная для коммерческого использования в 1850-х годах. Несмотря на довольно приличный возраст в более чем 150 лет, они по-прежнему активно применяются в современных устройствах. Более того, они активно применяются в приложениях, где, казалось бы, вполне возможно обойтись современными технологиями. Некоторые распространенные устройства вполне активно применяют СКБ, такие как источники бесперебойного питания (ИБП), гольфкары или вилочные погрузчики. Удивительно, но рынок свинцово-кислотных аккумуляторов по-прежнему растет для определенных ниш и проектов.

Первое, довольно ощутимое нововведение в свинцово-кислотную технологию пришло в 1970-е годы, когда были изобретены герметичные СКБ или необслуживаемые СКБ. Данная модернизация состояла в появлении специальных клапанов для стравливания газов при зарядке/разрядке аккумуляторов. Кроме того, применение увлажнённого сепаратора сделало возможным эксплуатировать аккумулятор в наклонном положении без протеканий электролита.

СКБ, или англ. SLA, часто классифицируют по типу или применению. В настоящее время наиболее распространенными являются два типа: гель, известный также как свинцово-кислотная батарея с регулируемым клапаном (valve-regulated lead acid (VRLA)) и абсорбирующий стеклянный мат (absorbent glass mat AGM). Аккумуляторы AGM используются для небольших ИБП, аварийного освещения и инвалидных колясок, в то время как VRLA предназначается для приложений более крупного формата, таких как резервное питание для сотовых ретрансляционных мачт, интернет-центров и вилочных погрузчиков. Свинцово-кислотные аккумуляторы также можно классифицировать по следующим признакам: автомобильные (стартер или SLI — запуск, освещение, зажигание); тяговые (тяга или глубокий цикл); стационарные (источники бесперебойного питания). Основным недостатком SLA во всех этих приложениях является жизненный цикл — если они многократно разряжаются, они сильно повреждаются.

Удивительно, но свинцово-кислотные аккумуляторы были бесспорными лидерами рынка аккумуляторных батарей в течении многих десятилетий, вплоть до появления литий-ионных батарей в 1980-х годах. Литий-ионная батарея представляет собой перезаряжаемую ячейку, в которой ионы лития движутся от отрицательного электрода к положительному во время разряда, и наоборот во время заряда. Литий-ионные аккумуляторы используют интеркалированные литиевые соединения, но не содержат металлического лития, который используется в одноразовых батареях.

Литий-ионный аккумулятор впервые был изобретен в 1970-х годах. В 1980-х на рынок была выпущена первая коммерческая версия батареи с катодом на основе оксида кобальта. Данный тип устройств имел значительно большие возможности по весу и емкости, по сравнению с системами на никелевой основе. Новые литий-ионные аккумуляторы способствовали огромному росту рынка мобильных телефонов и ноутбуков. Первоначально, из-за соображений безопасности, вводились более безопасные варианты, которые включали добавки на основе никеля и марганца в кобальт-оксидный материал катода, в дополнение к инновациям в строительстве клеток.

Первые литий-ионные элементы, представленные на рынке, были в жестких алюминиевых или стальных банках, и, как правило, имели только несколько форм-факторов цилиндрической или призматической (форма кирпича) формы. Однако, с расширением спектра применения литий-ионной технологии начали изменяться и их габаритные размеры.

Например, менее дорогие версии более старой технологии применяются в ноутбуках и сотовых телефонах. Современные тонкие литий-полимерные элементы используются в смартфонах, планшетах и носимых устройствах. В настоящее время литий-ионные аккумуляторы используются в электроинструментах, электрических велосипедах и других устройствах. Такая вариация предвещает полную замену свинцово-кислотных устройств во все новых и новых приложениях, направленных на улучшение габаритных и силовых показателей.

Химические особенности

Фундаментальные основы химических процессов в ячейках придают свинцово-кислотным и литий-ионным устройствам определенные свойства и различные степени функциональных возможностей. Ниже приведены некоторые преимущества свинцово-кислотных аккумуляторов, которые сделали его основным в течении десятилетий и недостатки, которые теперь приводят к его замене, а также подобные аспекты для литий-ионных устройств.

Свинцово-кислотная батарея

  • СКБ проста, надежна и недорога. Ее можно использовать в широком диапазоне температур.
  • Батареи должны хранится в постоянно заряженном состоянии (SoC) и они не поддаются быстрой зарядке.
  • СКБ имеют большой вес. Их гравиметрическая плотность энергии очень мала.
  • Жизненный цикл обычно составляет от 200 до 300 разрядов/зарядов, что очень мало.
  • Кривая заряда/разряда позволяет измерять SOC с простым контролем напряжения.

Литий-ионная батарея

  • Имеют максимальную плотность энергии по размеру и весу.
  • Жизненный цикл обычно составляет от 300 до 500, но может измеряться и тысячами для литий-фосфатных ячеек;
  • Очень мал диапазон рабочих температур;
  • Доступны различные размеры ячеек, формы и другие возможности;
  • Нет необходимости в техническом обслуживании. Уровень саморазряда очень мал.
  • Требуется реализация схем по безопасности эксплуатации. Сложный алгоритм зарядки.
  • Измерения SoC требует непростых решений из-за нелинейности кривой напряжения.

Электроника

Важно понимать различие между батарейным блоком и аккумулятором. Ячейка – основной составной элемент пакета. Помимо этого, в пакет еще входит электроника, разъемы и корпус. На рисунке выше показаны примеры данных устройств. Литий-ионная аккумуляторная батарея должна иметь, как минимум, реализованные схемы защиты и управления ячейкой, а зарядное устройство и система измерения напряжения гораздо сложнее, чем в свинцово-кислотных устройствах.

При использовании литий-ионных и свинцово-кислотных аккумуляторов, основные отличия в электронике будут заключаться в следующем:

Зарядка

Зарядка свинцово-кислотного аккумулятора довольно проста при соблюдении определенных порогов напряжений. В литий-ионных батареях используют более сложный алгоритм, за исключением пакетов на основе фосфата железа. Стандартный метод заряда для таких устройств – метод постоянного тока / постоянного напряжения (CC / CV). Он включает в себя двухэтапный процесс зарядки. На первом этапе происходит заряд с постоянным током. Длится это до тех пор, пока напряжение на ячейке не достигнет определенного порога, после чего напряжение остается постоянным, а ток снижается по экспоненциальному закону, пока не достигнет значения отсечки.

Подсчет заряда и связь

Как упоминалось ранее, заряд СКБ можно измерять простыми средствами измерения напряжения. При использовании литий-ионных аккумуляторов необходим контроль уровня заряда ячеек, для чего необходима реализация сложных алгоритмов и циклов обучения.

I 2 C является наиболее распространенным и экономичным протоколом связи, используемым в литий-ионных аккумуляторах, но он имеет ограничения в отношении помехоустойчивости, целостности сигнала на расстоянии и общей полосы пропускания. SMBus (шина управления системой), производная от I 2 C, очень распространена в батареях меньшего размера, но в настоящее время не имеет какой-либо эффективной поддержки для мощных или более крупных пакетов. CAN прекрасно подходит для сред с высоким уровнем шума или там, где требуются длительные прогоны, например во многих СКБ-приложениях, но это стоит довольно дорого.

Прямые замены

Следует подчеркнуть, что ныне существует несколько стандартных форматов свинцово-кислотных батарей. Например - U1, стандартный форм-фактор, используемый в приложениях резервного питания медицинского оборудования. Литий-железо-фосфатный аккумулятор оказался вполне достойной заменой свинцово-кислотным. Фосфат железа обладает замечательным жизненным циклом, хорошей проводимостью зарядов, улучшенной безопасностью и низким импедансом. Напряжения литий-железо-фосфатных аккумуляторов также хорошо согласуются с напряжениями свинцово-кислотных (12 В и 24 В), что позволяет использовать одни и те же зарядные устройства. Программные пакеты для обслуживания и контроля батарей включают в себя интеллектуальные функции, такие как отслеживание заряда, счетчик циклов заряда/разряда и другие.

Литий-железо-фосфатные батареи сохраняют 100% емкости при хранении, в отличие от СКБ батарей, которые теряют емкость в течение нескольких месяцев хранения. На рисунке выше сравниваются два продукта и типы достижений, достигнутых при переходе от СКБ к Li-ion.

Выводы

Очень мало существует батарей, которые способны хранить столько же энергии, как свинцово-кислотные, что делает данный вид аккумуляторов экономически выгодным для многих мощных устройств. Литий-ионная технология постоянно снижается в цене, а также постоянные совершенствование их химических структур и систем безопасности делает их достойным конкурентом свинцово-кислотной технологии. Устройства для их применения могут быть самые различные, начиная от устройств бесперебойного питания, до электромобилей и беспилотников.

Литий-ионные аккумуляторы не столь «привередливы», как их никель-металл-гидридные собратья, но все равно требуют определенного ухода. Придерживаясь пяти простых правил , можно не только продлить жизненный цикл литий-ионных аккумуляторных батарей, но и повысить время работы мобильных устройств без подзарядки.

Не допускайте полного разряда. У литий-ионных аккумуляторов отсутствует так называемый эффект памяти, поэтому их можно и, более того, нужно заряжать, не дожидаясь разрядки до нуля. Многие производители рассчитывают срок жизни литий-ионного аккумулятора количеством циклов полного разряда (до 0%). Для качественных аккумуляторов это 400-600 циклов . Чтобы увеличить срок службы вашего литий-ионного аккумулятора, чаще заряжаете свой телефон. Оптимально, как только показатель заряда батареи опустится ниже отметки 10-20 процентов, можете ставить телефон на зарядку. Это увеличит количество циклов разряда до 1000-1100 .
Данный процесс специалисты описывают таким показателем как Глубина Разряда (Depth Of Discharge). Если ваш телефон разряжен до 20%, то Глубина Разряда составляет 80%. В нижеприведенной таблице показана зависимость количества циклов разряда литий-ионного аккумулятора от Глубины Разряда:

Разряжайте раз в 3 месяца. Полный заряд на протяжении длительного времени также же вреден для литий-ионных аккумуляторов, как и постоянная разрядка до нуля.
Из-за крайне нестабильного процесса заряда (мы часто заряжаем телефон как придется, и где получится, от USB, от розетки, от внешнего аккумулятора и тд.) специалисты рекомендуют раз в 3 месяца полностью разряжать аккумулятор и после этот заряжать до 100% и подержать на зарядке 8-12 часов. Это помогает сбросить так называемый верхний и нижний флаги заряда аккумулятора. Более подробно об этом можно прочитать .

Храните частично заряженными . Оптимальным состоянием для длительного хранения литий-ионного аккумулятора является уровень заряда от 30 до 50 процентов при температуре 15°C. Если же оставить батарею полностью заряженной, со временем ее емкость существенно снизится. А вот аккумулятор, который долгое время пылился на полке разряженным до нуля, скорее всего, уже не жилец – пора отправлять его на утилизацию.
В нижеприведенной таблице показано сколько остается емкости в литий-ионном аккумуляторе в зависимости от температуры хранения и уровня заряда при хранении в течение 1 года.

Используйте оригинальное зарядное устройство. Мало кто знает, что зарядное устройство в большинстве случаев встроено непосредственно внутрь мобильных устройств, а внешний сетевой адаптер лишь понижает напряжение и выпрямляет ток бытовой электросети, то есть напрямую на батарею не воздействует. Некоторые гаджеты, например цифровые фотокамеры, лишены встроенного зарядного устройства, и поэтому их литий-ионные аккумуляторы вставляют во внешний «зарядник». Вот тут-то использование внешнего зарядного устройства сомнительного качества вместо оригинального может негативно сказаться на работоспособности батареи.

Не допускайте перегрева. Ну а злейшим врагом литий-ионных аккумуляторов является высокая температура – перегрева они напрочь не переносят. Поэтому не допускайте попадания на мобильные устройства прямых солнечных лучей, а также не оставляйте их в непосредственной близости от источников тепла, например электрообогревателей. Максимально допустимые температуры, при которых возможно использование литий-ионных аккумуляторов: от –40°C до +50°C

Также, вы можете посмотреть

В данное время широко распространены li ion аккумуляторы и Li-pol (литий-полимерные).

Различия между ними состоит в электролите. В первом варианте в качестве его используется гелий, во втором – насыщенный раствором, содержащим литий, полимер. Сегодня, благодаря популярности автомобилей на электродвигателях остро стоит вопрос поиска идеального типа аккумулятора li ion, который оптимально подойдет для такого транспорт.

Состоит он, как и другие аккумуляторы, из анода (пористый углерод) и катода (литий), разделяющего их сепаратора и проводника — электролита. Процесс разрядки сопровождается переходом «анодных» ионов на катод через сепаратор и электролит. Их направление изменяется на противоположное во время зарядки (рисунок ниже).

Ионы циркулируют в процессе разрядки и зарядки ячейки между разноименно заряженными электродами.

Ионные батареи имею катод, выполненный из разных металлов, что является их главным отличием. Производители, используя для электродов разные материалы, улучшают характеристики аккумуляторов.

Но, случается, что улучшение одних характеристик приводит к резкому ухудшению других. Например, при оптимизации емкости, необходимой, чтобы увеличить время поездки, можно увеличить мощность, безопасность, снизить негативное воздействие на окружающую среду. Одновременно можно уменьшить ток нагрузки, увеличить стоимость или размер аккумуляторной батареи.

Познакомиться с главными параметрами разных типов литиевых батарей (литий-марганцевых, литий – кобальтовых, литий – фосфатных и никель-марганец – кобальтовых) можно в таблице:

Правила для пользователей электротранспортом

Емкость таких батарей при длительном хранении практически не уменьшается. Разряжаются li ion аккумуляторы всего на 23% , если хранится при температуре 60 градусов на протяжении 15 лет. Именно благодаря этим свойствам их широко применяют в электротранспортных технологиях.

Для электрического транспорта подходят литий – ионные батареи, имеющие полноценную систему управления, встроенную в корпус.

По этой причине пользователи при эксплуатации забывают об основных правилах, способных продлению их срока службы:

  • аккумулятор необходимо полностью зарядить сразу после его покупки в магазине, поскольку в процессе производства заряжаются электроды на 50%. Поэтому доступная емкость уменьшится, т.е. время работы, если отсутствует первоначальная зарядка;
  • нельзя допускать полной разрядки батареи, чтобы сохранить ее ресурс;
  • заряжать батарею необходимо после каждого выезда, пусть даже заряд еще остался;
  • не нагревать аккумуляторы, поскольку высокие температуры способствуют процессу старения. Для того, чтобы использовать ресурс максимально, нужно эксплуатацию проводить при оптимальной температуре, которой является 20-25 градусов. Следовательно, вблизи теплового источника батарею нельзя хранить;
  • в холодное время рекомендуется завернуть аккумулятор в полиэтиленовый пакет с вакуумным замком, чтобы хранить при 3-4 градусах, т.е. в помещении не отапливаемом. Заряд составлять должен хотя бы 50% от полного;
  • после того, как аккумулятор эксплуатировался при отрицательных температурах, нельзя его заряжать, не выдержав некоторое время при температуре комнатной, т. е. его требуется прогреть;
  • заряжать батарею нужно от зарядного устройства, поставляемого в комплекте.

ПУ этих батарей несколько подвидов — литий – LiFePO4 (железо – фосфатные), использующие катод из фосфата железа. Характеристики их позволяют говорить об аккумуляторах, как о вершине технологий, используемых для производства батарей.

Основными их преимуществами являются:

  • количество циклов заряда-разряда, которое достигает 5000 до момента, когда емкость уменьшится на 20%;
  • длительный срок эксплуатации;
  • отсутствующий «эффект памяти»;
  • широкий температурный диапазон при неизменных рабочих характеристиках (300-700 градусов Цельсия);
  • химическая стабильность и термическая, повышающие безопасность.

Наиболее широко применяемые аккумуляторы

Среди множества наиболее распространены li ion аккумуляторы типоразмера 18650, выпускаемые пятью компаниями: LG, Sony, Panasonic, Samsung, Sanyo, заводы которых находятся в Японии, Китае, Малайзии и Южной Карее. Планировалось, что использоваться li ion аккумуляторы 18650 будут в ноутбуках. Однако, благодаря удачному формату их применяют в моделях на радиоуправлении, электромобилях, фонарях и т.д.

Как всякий качественный товар, такие аккумуляторы имеют много подделок, поэтому, чтобы продлить срок эксплуатации прибора, приобретать нужно только батареи известных брендов.

Защищенные и незащищенные литий – ионные батареи

Важно для литиевых батарей также, защищенными они являются или нет. Рабочий диапазон первых — 4,2-2,5В (применяются в девайсах, рассчитанных на работу с литий-ионными источниками): светодиодных фонарях, бытовой маломощной технике и пр.

В электроинструментах, велосипедах с электродвигателями, ноутбуках, видео- и фототехнике применяются незащищенные аккумуляторы, управляемые контроллером.

Что необходимо знать о литий — ионных батареях?

В первую очередь, ограничения, которые нужно соблюдать при эксплуатации:

  • напряжение перезарядки (максимальное) не может быть выше 4,35В;
  • минимальное же его значение не может пускаться ниже отметки в 2,3 В;
  • ток разряда не должен превышать более чем в два раза, значение емкости. Если значение последней — 2200мАЧ, величина тока максимальная составляет 4400 мА.

Функции, выполняемые контроллером

Для чего нужен контроллер заряда li ion аккумулятора? Он выполняет несколько функций:

  • подает ток, компенсирующий саморазряд. Его величина меньше, чем максимальный ток заряда, но больше, чем ток саморазряда;
  • реализует эффективный алгоритм цикла заряд/разряд для конкретного аккумулятора;
  • компенсирует разницу энергетических потоков при одновременной зарядке и обеспечении энергией потребителя. К примеру, при зарядке и питании ноутбука;
  • измеряет при перегреве или переохлаждении температуру, предотвращая порчу батарее.

Изготавливают контроллер заряда li ion аккумулятора либо в виде встраиваемой в батарею микросхемы, либо как отдельное устройство.

Для зарядки батарей лучше использовать штатное зарядное устройство для 18650 li ion аккумуляторов, поставляемое в комплекте. Зарядное устройство для литиевых аккумуляторов 18650 обычно имеет индикацию уровня заряда. Чаще это светодиод, который показывает, когда идет заряд и его окончание.

На более продвинутых устройствах можно отслеживать на дисплее время, оставшееся до окончания заряда, текущее напряжение. Для аккумулятора 18650, емкость которого 2200мА, время зарядки составляет 2 часа.

Но, важно знать, каким током заряжать li ion аккумулятор 18650. Он должен составлять половину номинальной емкости, т.е., если она составляет 2000 mAh, то ток оптимальный – 1А. Заряжая аккумулятор высоким током, быстро наступает его деградация. При использовании низкого тока потребуется больше времени.

Видео: Как заряжать аккумулятор Li ion зарядное своими руками

Схема устройства для зарядки аккумуляторов

Выглядит она следующим образом:

Отличается схема надежностью и повторяемостью, а входящие детали являются недорогими и легкодоступными. Чтобы срок эксплуатации батареи увеличить, требуется грамотная зарядка li ion аккумуляторов: к концу зарядки напряжение должно уменьшаться.

После ее завершения, т.е. при достижении нулевой отметки током, должна остановиться зарядка li ion аккумулятора. Схема, приведенная выше, этим требованиям удовлетворяет: подключенный к зарядному устройству разряженный АКБ (загорается VD3), использует ток 300мА.

Об идущем процессе свидетельствует горящий светодиод VD1.Постепенно уменьшающийся до 30 мА ток, свидетельствует о зарядке аккумулятора. Об окончании процесса сигнализирует, загоревшийся светодиод VD2.

В схеме использован операционный усилитель LM358N (можно заменить его аналогом КР1040УД1 или же КР574УД2, отличающимся расположением выводов), а также транзистор VT1 S8550 9 светодиоды желтого, красного и зеленого цветов (1,5В).

Можно ли реанимировать аккумулятор?

После пары лет активной эксплуатации аккумуляторы катастрофически теряют емкость, создавая проблемы при пользовании любимым девайсом. Возможно ли, и как восстановить li ion аккумулятор пока пользователь занимается поиском замены?

Восстановление li ion аккумулятора возможно на время несколькими способами.

Если вздулась батарея, т.е. перестала держать заряд, значит, внутри скопились газы.

Тогда поступают следующим образом:

  • корпус батареи отсоединяют аккуратно от датчика;
  • отделяют электронный датчик;
  • находят под ним колпачок с управляющей электроникой и прокалывают его осторожно иглой;
  • затем, находят тяжелый плоский предмет, по площади больший, чем площадь батареи, использоваться который будет в качестве пресса (не применять тиски и аналогичные устройства);
  • положить батарею на горизонтальную плоскость, и придавить прессом, помня, что аккумулятор можно повредить, прикладывая чрезмерное усилие. Если же оно недостаточно, результата можно не достичь. Это самый ответственный момент;
  • осталось капнуть на отверстие эпоксидной смолой и припаять датчик.

Есть и другие способы, прочесть о которых можно на страницах Интернет.

Подобрать зарядное устройство можно на сайте http://18650.in.ua/chargers/ .

Видео: Li-ion аккумуляторы, советы по эксплуатации li-ion батарей

Литиевые аккумуляторы

Литиевые или литий-ионные (Li-ion) аккумуляторы в основном присутствуют в сотовых телефонах, ноутбуках, видеокамерах. Изделия дорогие, аккумуляторы тоже, поэтому и обращаться с ними нужно еще грамотнее, чем с любыми другими аккумуляторами. Так в чем же сила Литий-Йона? Здесь, наверное, еще больше слухов и мифов. Во-первых, она начинает появляться сама собой хотя бы потому, что продавцы техники с Li-ion аккумуляторами особых напутствий не дают, говоря, что батарея “умная” и сама все сделает как надо. А вот и не сама. Ведь сколько есть случаев, когда владельцы новых ноутбуков за месяц батарею приводили в негодность и потом платили хорошие за новую батарею. Конечно, литиевые батареи потому и дорогие, что напичканы электроникой, но она, к сожалению, не спасает от дурака.

Переразряд

Как и в случае никелевых аккумуляторов, литиевые также сильно боятся перезаряда и переразряда. Но, поскольку эти батареи используются в интеллектуальных устройствах и комплектуются собственными зарядными устройствами, их электроника не допускает перезаряда – т.о. его можно не бояться. А вот переразряд сложнее контролировать, поэтому он и является самой типичной причиной досрочного выхода аккумулятора из строя. Конечно, в дорогих и сложных устройствах, например, в ноутбуках, отключение происходит до падения напряжения до критического значения. Но прецеденты указывают на то, что это аварийное отключение лучше рассматривать как экстренную меру, до которой, по возможности, лучше не доводить. Это самое главное правило – избегать полной разрядки, поскольку низкое напряжение может отключить цепь аварийной защиты. Бывает, что люди «убивают» батареи, увлекшись тренировкой. Тренировка - вещь хорошая, но для литиевых батарей достаточно 2-3 полных цикла.

Для литиевых батарей нет эффекта памяти, поэтому их можно заряжать когда угодно, так что после тренировки лучше не разряжать батареи до конца. Рекомендуемый нижний порог – 5-10 %. Критический нижний порог – 3 %.

Много неполных циклов или один полный

У литиевых батарей срок службы – примерно 300 циклов. Полным циклом считается цикл полного заряда и полного (т.е. примерно до 3 % емкости) разряда, или наоборот. Если разрядить батарею до 50 %, а потом зарядить, то это будет 1/2 цикла, если до 75 % и зарядить – 1/4 цикла и т.д. Так вот, для телефонов и ноутбуков разница в пользе между полными и неполными циклами различна. В Интернете упорно утверждается, что куча народа заряжала телефоны при неполном разряде (т.е. каждый день дозаряжали телефон) и в итоге угробила их . В то же время, для ноутбуков достоверно известно, что полные циклы быстрее изнашивают батарею, чем неполные . Ситуация проясняется при детальном рассмотрении устройства Li-ion аккумуляторов (см. доп. материалы). Оказывается, многое зависит от контроллера. Именно он контролирует ток заряда, следит за состоянием батареи и т.д. Так вот, в ноутбуках контроллер расположен в самой батарее и корректируется системными утилитами, например калибровкой. В сотовых телефонах контроллер расположен в самом телефоне и так просто не корректируется. Хоть в литиевых батареях и нет эффекта памяти, но есть так называемый эффект “цифровой памяти” . Дело в том, что электроника управления зарядом-разрядом, размещенная в самой батарее, работает независимо от устройства, батарею использующего. Внутренняя электроника следит за уровнем напряжения элемента, прерывает заряд по достижении установленной максимальной величины (с учетом изменения напряжения, обусловленного током зарядки и температуры батареи), прерывает разряд при достижении критической величины и сообщает об этом “наверх” (для этих целей производится большая номенклатура специализированных микросхем). Система же мониторинга батареи “наверху” вычисляет уровень заряда, основываясь на информации о моментах выключения заряда и разряда от батареи и показаниях системы измерения тока. Но если условия работы таковы, что полной разрядки до аппаратного отключения или полной зарядки не происходит, эти вычисления после нескольких циклов могут стать не вполне корректными – емкость батареи со временем падает, да и показания измерителя тока не всегда могут соответствовать реальности. Обычно отклонения не превышают одного процента на каждый цикл, если только в процессе эксплуатации не произошло серьезных изменений, связанных, к примеру, с выходом из строя одного из элементов батареи. Система мониторинга имеет возможность “обучаться”, то есть пересчитывать значение полной емкости батареи, но для этого нужно выполнить как минимум один полный цикл заряд-разряд до срабатывания аппаратных схем самой батареи. Вот и выходит, что при очень частых циклах контроллер сбивается, а, следовательно, неправильно вычисляет заряд батареи и осуществляет неправильную зарядку, в результате чего батарея портится. В отличие от ноутбука, телефон перекалибровать нельзя. Все, что остается в данном случае, это сделать пару полных циклов, чтобы привести контроллер в порядок. Я рекомендую, в идеале, совмещать полные и неполные циклы, придерживаясь принципа “золотой середины”. Лично я со своим сотовым так и делал – в результате, после 2-х лет эксплуатации падение емкости составило не более 40 %, что является нормой. Отчасти, время тоже не щадит литиевые аккумуляторы – они изнашиваются со временем независимо от эксплуатации; век их недолог и разумно менять аккумуляторы раз в 2-3 года.

Хранение

Если аккумулятор не используется, рекомендуется хранить его при 40 % емкости в прохладном месте. Нижний предел температуры для хранения и эксплуатации – 00 С. Вообще литиевые аккумуляторы любят быть заряженными, т.е. их лучше и хранить и держать в заряженном состоянии, в отличие от никелевых. Но при длительном хранении максимальный заряд все же сильнее изнашивает батарею, поэтому оптимальным состоянием считается 40 % заряда .

Реанимация батареи

Вообще, если батарея сдохла, лучше купить новую, это самый логичный вариант, хотя и дорогой. Достоверных рецептов реанимации батарей я не встречал. Тут ходят настоящие легенды, особенно про ноутбуки, что люди реанимировали свой угробленный аккумулятор ноутбука и все у них замечательно. Одна из них звучит так: “Нужно полностью разрядить аккумулятор, оставить ноутбук на неделю; затем полностью зарядить аккумулятор и тоже оставить на неделю; через два месяца емкость должна восстановиться” .

Для сотовых телефонов: совмещать полные и неполные циклы (в пропорции “ХЗ”).
Для ноутбуков: как можно меньше полных циклов (после тренировки).
Для всех: рекомендуется делать 80%-ные циклы; не допускать полного разряда (ниже 3 %).