Назначение прикладного уровня. Модель взаимодействия открытых систем (OSI)




Разработана эта модель была в далеком 1984 году Международной организацией по стандартизации (International Standard Organization, ISO), и в оригинале называется Open Systems Interconnection, OSI.
Модель взаимодействия открытых систем (по факту - модель сетевого взаимодействия) является стандартом для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей.
Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.


  • Физический уровень (Physical layer) - определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
  • Канальный уровень (Data Link layer) - отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
  • Сетевой уровень (Network layer) - обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю.
  • Транспортный уровень (Transport layer) - реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
  • Сессионный (или сеансовый) уровень (Session layer) - позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
  • Уровень представления (Presentation layer) - осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
  • Прикладной уровень (Application layer) - предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.

Модель OSI простым языком


Модель OSI – это аббревиатура от английского Open System Interconnection, то есть модель взаимодействия открытых систем. Под открытыми системами можно понимать сетевое оборудование (компьютеры с сетевыми картами, коммутаторы, маршрутизаторы).
Сетевая модель OSI представляет собой схему работы (или план действий по обмену данными) для сетевых устройств. Также OSI играет роль в создании новых сетевых протоколов, так как служит эталоном взаимодействия.
OSI состоит из 7 блоков (уровней). Каждый блок выполняет свою уникальную роль в сетевом взаимодействии различных сетевых устройств.
7 уровней модели OSI: 1 - Физический, 2 - Канальный, 3 - Сетевой, 4 - Транспортный, 5 - Сеансовый, 6 - Представления, 7 - Приложений.
На каждом уровне модели есть собственный набор сетевых протоколов (стандартов передачи данных), с помощью которых устройства в сети обмениваются данными.
Запомните, чем сложнее сетевое устройство, тем больше возможностей оно предоставляет, но и больше уровней занимает, и как следствие – медленней работает.

Сетевые модели. Часть 1. OSI.


Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).
Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.
Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.
Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.
Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.
Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

Эталонная сетевая модель OSI


OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.
Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.
Перечислим их:
7. Прикладной уровень (application layer)
6. Представительский уровень или уровень представления (presentation layer)
5. Сеансовый уровень (session layer)
4. Транспортный уровень (transport layer)
3. Сетевой уровень (network layer)
2. Канальный уровень (data link layer)
1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень


Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень


Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).
Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.
Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень


Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.
Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень


Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).
А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.
Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.
На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.
Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень


Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.
Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.
На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.
Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.
Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).
Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

Канальный уровень


Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.
IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.
LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.
MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.
Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.
Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.
Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

Физический уровень


Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.
Подробности и спецификации ждите в следующих статьях и в курсе CCNA. Вся первая часть курса CCNA (Exploration 1) посвящена модели OSI.

Заключение


Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

После недолгих размышлений решил поместить сюда статью с сайта Сетевых заморочек . Чтобы всё лежало в одном месте.

И снова здравствуйте дорогие друзья, сегодня мы с вами разберемся в том, что же такое сетевая модель OSI, зачем она, собственно говоря, предназначена.

Как вы уже наверное понимаете, современные сети устроены очень и очень сложно, в них протекает множество различных процессов, выполняются сотни действий. Для того чтобы упростить процесс описания данного многообразия функций сети (а что еще более важно упростить процесс дальнейшей разработки данных функций) были предприняты попытке их структурирования. В результате структурирования все функции, выполняемые компьютерной сетью, разделяются на несколько уровней, каждый из которых отвечает только за определенный, узкоспециализированый круг задач. Здесь сетевую модель можно сравнить со структурой компании. Компания разделена на отделы. Каждый отдел выполняет свои функции, но во время работы контактирует с другими отделами.


Разделение функций с помощью сетевой модели


Сетевая модель OSI разработана таким образом, чтобы вышестоящие уровни сетевой модели использовали нижестоящие уровни сетевой модели, для передачи своей информации. Правила, с помощью которых общаются уровни модели, называются сетевыми протоколами. Сетевой протокол определенного уровня модели может общаться либо с протоколами своего уровня, либо с протоколами соседних уровней. Здесь опять же можно провести аналогию с работой компании. В компании всегда есть четко установленная иерархия, хотя и не такая строгая как в сетевой модели. Работники одной ступени иерархии выполняют поручения, полученные от работников более высокого уровня иерархии.


Взаимодействие между уровнями сетевой модели OSI


Каждое устройство, работающее в сети, можно представить в виде системы работающей на соответствующих уровнях модели OSI. Причем данное устройство может использовать в своей работе, как все уровни модели OSI, так и только некоторые нижние ее уровни. Обычно когда говорят, что устройство работает на некотором уровне модели, то подразумевают, что оно работает на данном уровне сетевой модели и на всех лежащих ниже уровнях.


Работа не некоторых уровнях сетевой модели OSI


Когда два различных устройства сети общаются между собой, они используют протоколы одних и тех же уровней сетевой модели, при этом в процесс взаимодействия вовлекается как протоколы уровня на котором непосредственно происходит взаимодействие, так и необходимые протоколы всех нижележащих уровней, так как они используются для передачи данных, полученных от верхних уровней.


Общение двух систем с позиции модели OSI


При передачи информации от верхнего уровня сетевой модели к нижнему уровню сетевой модели, к данной полезной информации добавляется некоторая служебная информация, называемая заголовком (на 2 уровне добавляется не только заголовок, но еще и концевик). Данный процесс добавления служебной информации называется инкапсуляцией. При приеме (передачи информации от нижнего уровня к верхнему) происходит отделение данной служебной информации и получение исходных данных. Такой процесс называется деинкапсуляцией. По своей сути этот процесс очень похож на процесс отправки письма по почте. Представьте, что вы хотите отправить письмо своему другу. Вы пишите письмо – это полезная информация. Отправляя ее по почте, вы упаковываете ее в конверт, надписывая на нем адрес получателя, то есть добавляете к полезной информации некоторый заголовок. По сути это и есть инкапсуляция. Получая ваше письмо, ваш друг его деинкапсулирует – то есть разрывает конверт и достает из него полезную информацию – ваше письмо.


Демонстрация принципа инкапсуляции


Модель OSI подразделяет все функции, выполняемые при взаимодействии систем на 7 уровней: Физический(Physical) - 1, Канальный(Data link) -2, Сетевой(network) – 3, Транспортный(transport) – 4, Сеансовый(Session) -5, Представительский(Presentation) -6 и Прикладной (Application) - 7.


Уровни модели взаимодействия открытых систем


Кратенько рассмотрим назначение каждого из уровней модели взаимодействия открытых систем.

Прикладной уровень является точкой, через которую приложения общаются с сетью (точка входа в модель OSI). С помощью данного уровня модели OSI выполняется следующие задачи: управление сетью, управление занятостью системы, управление передачей файлов, идентификация пользователей по их паролям. Примерами протоколов данного уровня являются: HTTP, SMTP, RDP и д.р. Очень часто протоколы прикладного уровня выполняют одновременно функции протоколов представительского и сеансового уровней.


Данный уровень отвечает за формат представления данных. Грубо говоря, он преобразует данные полученные от уровня приложений к формату пригодному для передачи по сети (ну и соответственно выполняет обратную операцию преобразуя информацию, полученную из сети, к формату пригодному для обработки приложениями).


На данном уровне происходит установление, поддержание и управление сеансом связи между двумя системами. Именно данный уровень отвечает за поддержание связи между системами на весь промежуток времени в течение которого происходит их взаимодействие.


Протоколы данного уровня сетевой модели OSI отвечают за передачу данных от одной системы другой. На данном уровне большие блоки данных разделяются на более мелкие блоки, пригодные для обработки сетевым уровнем (очень мелкие блоки данных объединяются в более крупные), данные блоки соответствующим образом маркируются для их последующего восстановления на принимающей стороне. Так же при использовании соответствующих протоколов данный уровень способен обеспечить контроль доставки пакетов сетевого уровня. Блок данных, которым оперируют данный уровень обычно называется сегментом. Примерами протоколов данного уровня являются: TCP, UDP, SPX, ATP и д.р.


Данный уровень отвечает за маршрутизацию (определение оптимальных маршрутов от одной системы до другой) блоков данных данного уровня. Блок данных этого уровня обычно называется пакетом. Так же данный уровень отвечает за логическую адресацию систем (те самые IP адреса), на основе которой как раз и происходит маршрутизация. К протоколам данного уровня можно отнести: IP, IPX и др, к устройствам работающим на данном уровне – маршрутизаторы.


Данный уровень отвечает за физическую адресацию устройств сети (MAC адреса), управлением доступа к среде, а также коррекцией ошибок допущенных физическим уровнем. Блок данных, используемый на канальном уровне принято называть фреймом. К данному уровню относятся следующие устройства: коммутаторы (не все), мосты и д.р. Типичной технологией использующей данный уровень является Ethernet.


Осуществляет передачу оптических или электрических импульсов по выбранной среде передачи. К устройствам данного уровня можно отнести всевозможные повторители и концентраторы.


Модель OSI сама по себе не является практической реализацией, она лишь предполагает некоторый набор правил по взаимодействию компонентов системы. Практическим примером реализации стека сетевых протоколов является стек протоколов TCP/IP (а так же другие менее распространенные стеки протоколов).

В сетевой науке, как и в любой другой области знаний, существует два принципиальных подхода к обучению: движение от общего к частному и наоборот. Ну не то чтобы по жизни люди используют эти подходы в чистом виде, но все-таки на начальных этапах каждый обучающийся выбирает для себя одно из вышеозначенных направлений. Для высшей школы (по крайней мере (пост)советского образца) более характерен первый метод, для самообразования чаще всего второй: работал себе человек в сети, решал время от времени мелкие однопользовательского характера административные задачи, и вдруг захотелось ему разобраться -- а как, собственно, вся эта хреновина устроена?

Но цель этой статьи -- не философские рассуждения о методологии обучения. Мне хотелось бы представить вниманию начинающих сетевиков тообщее и главное, от которого, как от печки, можно танцевать к самым навороченным частным лавочкам. Понимая семиуровневую модель OSI и научившись "узнавать" ее уровни в уже известных вам технологиях, вы без труда сможете двигаться дальше в любом избранном вами направлении сетевой отрасли. Модель OSI суть тот каркас, на который будет навешиваться любое новое знание о сетях.

Данная модель так или иначе упоминается практически в любой современной литературе по сетям, а также во многих спецификациях конкретных протоколов и технологий. Не чувствуя необходимости изобретать велосипед, я решила опубликовать отрывки из работы Н. Олифер, В. Олифер (Центр Информационных Технологий) под названием “Роль коммуникационных протоколов и функциональное назначение основных типов оборудования корпоративных сетей”, которую считаю наилучшей и исчерпывающей публикацией в на эту тему.

шеф-редактор

модель

Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно представляет собой стандарт. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.

В модели OSI взаимодействие делится на семь уровней или слоев (рис. 1.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Рис. 1.1. Модель взаимодействия открытых систем ISO/OSI

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса, например, доступа к удаленным файлам, получение почты или печати на разделяемом принтере.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).

Функции уровней модели ISO/OSI

Физический уровень.Этот уровень имеет дело с передачей битов по физическим каналам, таким, например, как коаксиальный кабель, витая пара или оптоволоконный кабель. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, такие как требования к фронтам импульсов, уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных на кабеле, и другие характеристики среды и электрических сигналов.

Канальный уровень.На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен сообщениями между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка - точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B.

Сетевой уровень.Этот уровень служит для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами. Рассмотрим функции сетевого уровня на примере локальных сетей. Протокол канального уровня локальных сетей обеспечивает доставку данных между любыми узлами только в сети с соответствующейтиповой топологией . Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой стороны, допустить использование произвольных топологий, используется дополнительный сетевой уровень. На этом уровне вводится понятие "сеть". В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень.

Сообщения сетевого уровня принято называтьпакетами (packets) . При организации доставки пакетов на сетевом уровне используется понятие"номер сети" . В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами.Маршрутизатор - это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того, чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называетсямаршрутизацией и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту, оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время, как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемыхпротоколами обмена маршрутной информацией . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень.На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является вся система транспортировки данных в сети. Так, например, если качество каналов передачи связи очень высокое, и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок - с помощью предварительного установления логического соединения, контроля доставки сообщений с помощью контрольных сумм и циклической нумерации пакетов, установления тайм-аутов доставки и т.п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Сеансовый уровень.Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Уровень представления.Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером протокола, работающего на уровне представления, является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень.Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называетсясообщением (message) .

Существует очень большое разнообразие протоколов прикладного уровня. Приведем в качестве примеров хотя бы несколько наиболее распространенных реализаций файловых сервисов: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Модель OSI представляет хотя и очень важную, но только одну из многих моделей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, сервисами, предоставляемыми на верхних уровнях и прочими параметрами.

Характеристика популярных стеков коммуникационных протоколов

Итак, взаимодействие компьютеров в сетях происходит в соответствии с определенными правилами обмена сообщениями и их форматами, то есть в соответствии с определенными протоколами. Иерархически организованная совокупность протоколов, решающих задачу взаимодействия узлов сети, называется стеком коммуникационных протоколов.

Существует достаточно много стеков протоколов, широко применяемых в сетях. Это и стеки, являющиеся международными и национальными стандартами, и фирменные стеки, получившие распространение благодаря распространенности оборудования той или иной фирмы. Примерами популярных стеков протоколов могут служить стек IPX/SPX фирмы Novell, стек TCP/IP, используемый в сети Internet и во многих сетях на основе операционной системы UNIX, стек OSI международной организации по стандартизации, стек DECnet корпорации Digital Equipment и некоторые другие.

Использование в сети того или иного стека коммуникационных протоколов во многом определяет лицо сети и ее характеристики. В небольших сетях может использоваться исключительно один стек. В крупных корпоративных сетях, объединяющих различные сети, параллельно используются, как правило, несколько стеков.

В коммуникационном оборудовании реализуются протоколы нижних уровней, которые в большей степени стандартизованы, чем протоколы верхних уровней, и это является предпосылкой для успешной совместной работы оборудования различных производителей. Перечень протоколов, поддерживаемых тем или иным коммуникационным устройством, является одной из наиболее важных характеристик этого устройства.

Компьютеры реализуют коммуникационные протоколы в виде соответствующих программных элементов сетевой операционной системы, например, протоколы канального уровня, как правило, выполнены в виде драйверов сетевых адаптеров, а протоколы верхних уровней в виде серверных и клиентских компонент сетевых сервисов.

Умение хорошо работать в среде той или иной операционной системы является важной характеристикой коммуникационного оборудования. Часто можно прочитать в рекламе сетевого адаптера или концентратора, что он разрабатывался специально для работы в сети NetWare или UNIX. Это означает, что разработчики аппаратуры оптимизировали ее характеристики применительно к тем протоколам, которые используются в этой сетевой операционной системе, или к данной версии их реализации, если эти протоколы используются в различных ОС. Из-за особенностей реализации протоколов в различных ОС, в качестве одной из характеристик коммуникационного оборудования используется его сертифицированность на возможность работы в среде данной ОС.

На нижних уровнях - физическом и канальном - практически во всех стеках используются одни и те же протоколы. Это хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру.

Протоколы сетевого и более высоких уровней существующих стандартных стеков отличаются большим разнообразием и, как правило, не соответствуют рекомендуемому моделью ISO разбиению на уровни. В частности, в этих стеках функции сеансового и представительного уровня чаще всего объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель ISO появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует различать стек протоколов OSI и модель OSI. В то время, как модель OSI концептуально определяет процедуру взаимодействия открытых систем, декомпозируя задачу на 7 уровней, стандартизирует назначение каждого уровня и вводит стандартные названия уровней, стек OSI - это набор вполне конкретных спецификаций протоколов, образующих согласованный стек протоколов. Этот стек протоколов поддерживает правительство США в своей программе GOSIP. Все компьютерные сети, устанавливаемые в правительственных учреждениях после 1990 года, должны либо непосредственно поддерживать стек OSI, либо обеспечивать средства для перехода на этот стек в будущем. Тем не менее, стек OSI более популярен в Европе, а не в США, так как в Европе меньше установлено старых сетей, использующих свои собственные протоколы. В Европе также ощущается большая потребность в общем стеке, так как здесь имеется большое количество разных стран.

Это международный, независимый от производителей стандарт. Он может обеспечить взаимодействие между корпорациями, партнерами и поставщиками. Это взаимодействие осложняется из-за проблем с адресацией, именованием и безопасностью данных. Все эти проблемы в стеке OSI частично решены. Протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их более подходящими для мощных машин, а не для сетей персональных компьютеров. Большинство организаций пока только планируют переход к стеку OSI. Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T. Ее сеть Stargroup полностью базируется на стеке OSI.

По вполне очевидным причинам стек OSI в отличие от других стандартных стеков полностью соответствует модели взаимодействия OSI, он включает спецификации для всех семи уровней модели взаимодействия открытых систем (рис. 1.3).


Рис. 1.3. Стек OSI

На стек OSI поддерживает протоколы Ethernet, Token Ring, FDDI, а также протоколы LLC, X.25 и ISDN. Эти протоколы будут подробно обсуждены в других разделах пособия.

Сервисысетевого, транспортного и сеансового уровней также имеются в стеке OSI, однако они мало распространены. На сетевом уровне реализованы протоколы как без установления соединений, так и с установлением соединений. Транспортный протокол стека OSI в соответствии с функциями, определенными для него в модели OSI, скрывает различия между сетевыми сервисами с установлением соединения и без установления соединения, так что пользователи получают нужное качество обслуживания независимо от нижележащего сетевого уровня. Чтобы обеспечить это, транспортный уровень требует, чтобы пользователь задал нужное качество обслуживания. Определены 5 классов транспортного сервиса, от низшего класса 0 до высшего класса 4, которые отличаются степенью устойчивости к ошибкам и требованиями к восстановлению данных после ошибок.

Сервисыприкладного уровня включают передачу файлов, эмуляцию терминала, службу каталогов и почту. Из них наиболее перспективными являются служба каталогов (стандарт Х.500), электронная почта (Х.400), протокол виртуального терминала (VT), протокол передачи, доступа и управления файлами (FTAM), протокол пересылки и управления работами (JTM). В последнее время ISO сконцентрировала свои усилия именно на сервисах верхнего уровня.

X.400

- это семейство рекомендаций Международного консультативного комитета по телеграфии и телефонии (CCITT), в которых описываются системы пересылки электронных сообщений. На сегодняшний день рекомендации X.400 являются наиболее популярным протоколом обмена сообщениями. Рекомендации Х.400 описывают модель системы обмена сообщениями, протоколы взаимодействия между всеми компонентами этой системы, а также множество видов сообщений и возможности, которыми обладает отправитель по каждому виду отправляемых сообщений.

Рекомендации X.400 определяют следующий минимально необходимый набор услуг, предоставляемых пользователям: управление доступом, ведение уникальных системных идентификаторов сообщений, извещение о доставке или недоставке сообщения с указанием причины, индикация типа содержания сообщения, индикация преобразования содержания сообщения, временные отметки при передаче и доставке, выбор категории доставки (срочная, несрочная, нормальная), многоадресная доставка, задержанная доставка (до определенного момента времени), преобразование содержимого для взаимодействия с несовместимыми почтовыми системами, например, со службами телексной и факсимильной связей, запрос о том, доставлено ли конкретное сообщение, списки рассылки, которые могут иметь вложенную структуру, средства защиты сообщений от несанкционированного доступа, базирующиеся на асимметричной криптосистеме публичных ключей.

Целью рекомендацийX.500 является выработка стандартов глобальной справочной службы. Процесс доставки сообщения требует знания адреса получателя, что при больших размерах сетей представляет собой проблему, поэтому необходимо иметь справочную службу, помогающую получать адреса отправителей и получателей. В общем виде служба X.500 представляет собой распределенную базу данных имен и адресов. Все пользователи потенциально имеют право войти в эту базу данных, используя определенный набор атрибутов.

Над базой данных имен и адресов определены следующие операции:

  • чтение - получение адреса по известному имени,
  • запрос - получение имени по известным атрибутам адреса,
  • модификация, включающая удаление и добавление записей в базе данных.

Основные проблемы реализации рекомендаций X.500 проистекают из масштабности этого проекта, претендующего на роль всемирной справочной службы. Поэтому программное обеспечение, реализующее рекомендации X.500, получается весьма громоздким и предъявляет высокие требования к производительности аппаратуры.

ПротоколVT решает проблему несовместимости различных протоколов эмуляции терминалов. Сейчас пользователю персонального компьютера, совместимого с IBM PC, для одновременной работы с компьютерами VAX, IBM 3090 и HP9000 нужно приобрести три различные программы для эмуляции терминалов различных типов и использующих разные протоколы. Если бы каждый хост-компьютер имел бы в своем составе программное обеспечение протокола эмуляции терминала ISO, то и пользователю бы понадобилась только одна программа, поддерживающая протокол VT. В своем стандарте ISO аккумулировала широко распространенные функции эмуляции терминалов.

Передача файлов - это наиболее распространенный компьютерный сервис. Доступ к файлам, как к локальным, так и к удаленным, нужен всем приложениям - текстовым редакторам, электронной почте, базам данных или программам удаленного запуска. ISO предусматривает такой сервис в протоколеFTAM . Наряду со стандартом X.400, это наиболее популярный стандарт стека OSI. FTAM предусматривает средства для локализации и доступа к содержимому файла и включает набор директив для вставки, замены, расширения и очистки содержимого файла. FTAM также предусматривает средства для манипулирования файлом как единым целым, включая создание, удаление, чтение, открытие, закрытие файла и выбор его атрибутов.

Протокол пересылки и управления работамиJTM позволяет пользователям пересылать работы, которые должны быть выполнены на хост-компьютере. Язык управления заданиями, который обеспечивает передачу работ, указывает хост-компьютеру, какие действия и с какими программами и файлами должны быть выполнены. Протокол JTM поддерживает традиционную пакетную обработку, обработку транзакций, ввод удаленных заданий и доступ к распределенным базам данных.

Стек TCP/IP

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных и перспективных стеков коммуникационных протоколов. Если в настоящее время он распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров (Windows NT, NetWare) является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рисунке 1.4. Протоколы TCP/IP делятся на 4 уровня.

Рис. 1.4. Стек TCP / IP

Самый нижний (уровень IV ) - уровень межсетевых интерфейсов - соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов - собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка - точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III ) - это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протоколIP , который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информацииRIP (Routing Internet Protocol) иOSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщенийICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II ) называется основным. На этом уровне функционируют протокол управления передачейTCP (Transmission Control Protocol) и протокол дейтаграмм пользователяUDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I ) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet и ее российской ветви РЕЛКОМ, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них, наиболее тесно связанных с тематикой данного курса.

ПротоколSNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файловFTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файловTFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протоколtelnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, который она разработала для своей сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали имя стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньше степени, чем IPX/SPX. По количеству установок протоколы IPX/SPX лидируют, и это обусловлено тем, что сама ОС NetWare занимает лидирующее положение с долей установок в мировом масштабе примерно в 65%.

Семейство протоколов фирмы Novell и их соответствие модели ISO/OSI представлено на рисунке 1.5.

Рис. 1.5. Стек IPX / SPX

Нафизическом и канальном уровнях в сетях Novell используются все популярные протоколы этих уровней (Ethernet, Token Ring, FDDI и другие).

Насетевом уровне в стеке Novell работает протоколIPX , а также протоколы обмена маршрутной информациейRIP иNLSP (аналог протокола OSPF стека TCP/IP). IPX является протоколом, который занимается вопросами адресации и маршрутизации пакетов в сетях Novell. Маршрутные решения IPX основаны на адресных полях в заголовке его пакета, а также на информации, поступающей от протоколов обмена маршрутной информацией. Например, IPX использует информацию, поставляемую либо протоколом RIP, либо протоколом NLSP (NetWare Link State Protocol) для передачи пакетов компьютеру назначения или следующему маршрутизатору. Протокол IPX поддерживает только дейтаграммный способ обмена сообщениями, за счет чего экономно потребляет вычислительные ресурсы. Итак, протокол IPX обеспечивает выполнение трех функций: задание адреса, установление маршрута и рассылку дейтаграмм.

Транспортному уровнюмодели OSI в стеке Novell соответствует протокол SPX, который осуществляет передачу сообщений с установлением соединений.

На верхнихприкладном, представительном и сеансовом уровнях работают протоколы NCP и SAP. ПротоколNCP (NetWare Core Protocol) является протоколом взаимодействия сервера NetWare и оболочки рабочей станции. Этот протокол прикладного уровня реализует архитектуру клиент-сервер на верхних уровнях модели OSI. С помощью функций этого протокола рабочая станция производит подключение к серверу, отображает каталоги сервера на локальные буквы дисководов, просматривает файловую систему сервера, копирует удаленные файлы, изменяет их атрибуты и т.п., а также осуществляет разделение сетевого принтера между рабочими станциями.

(Service Advertising Protocol) - протокол объявления о сервисе - концептуально подобен протоколу RIP. Подобно тому, как протокол RIP позволяет маршрутизаторам обмениваться маршрутной информацией, протокол SAP дает возможность сетевым устройствам обмениваться информацией об имеющихся сетевых сервисах.

Серверы и маршрутизаторы используют SAP для объявления о своих сервисных услугах и сетевых адресах. Протокол SAP позволяет сетевым устройствам постоянно корректировать данные о том, какие сервисные услуги имеются сейчас в сети. При старте серверы используют SAP для оповещения оставшейся части сети о своих услугах. Когда сервер завершает работу, то он использует SAP для того, чтобы известить сеть о прекращении действия своих услуг.

В сетях Novell серверы NetWare 3.x каждую минуту рассылают широковещательные пакеты SAP. Пакеты SAP в значительной степени засоряют сеть, поэтому одной из основных задач маршрутизаторов, выходящих на глобальные связи, является фильтрация трафика SAP-пакетов и RIP-пакетов.

Особенности стека IPX/SPX обусловлены особенностями ОС NetWare, а именно ориентацией ее ранних версий (до 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Поэтому Novell нужны были протоколы, на реализацию которых требовалось минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS 640 Кбайтами) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате, протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами).

Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать у нее лицензию, долгое время ограничивали распространенность его только сетями NetWare. Однако к моменту выпуска версии NetWare 4.0, Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на приспособление их для работы в корпоративных сетях. Сейчас стек IPX/SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС - SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Фирмы Microsoft и IBM совместно работали над сетевыми средствами для персональных компьютеров, поэтому стек протоколов NetBIOS/SMB является их совместным детищем. Средства NetBIOS появились в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM, которая на прикладном уровне (рис. 1.6) использовала для реализации сетевых сервисов протокол SMB (Server Message Block).

Рис. 1.6. Стек NetBIOS / SMB

ПротоколNetBIOS работает на трех уровнях модели взаимодействия открытых систем:сетевом, транспортном и сеансовом . NetBIOS может обеспечить сервис более высокого уровня, чем протоколы IPX и SPX, однако не обладает способностью к маршрутизации. Таким образом, NetBIOS не является сетевым протоколом в строгом смысле этого слова. NetBIOS содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням, однако с его помощью невозможна маршрутизация пакетов, так как в протоколе обмена кадрами NetBIOS не вводится такое понятие как сеть. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети. NetBIOS поддерживает как дейтаграммный обмен, так и обмен с установлением соединений.

ПротоколSMB , соответствующий прикладному и представительному уровням модели OSI, регламентирует взаимодействие рабочей станции с сервером. В функции SMB входят следующие операции:

  • Управление сессиями. Создание и разрыв логического канала между рабочей станцией и сетевыми ресурсами файлового сервера.
  • Файловый доступ. Рабочая станция может обратиться к файл-серверу с запросами на создание и удаление каталогов, создание, открытие и закрытие файлов, чтение и запись в файлы, переименование и удаление файлов, поиск файлов, получение и установку файловых атрибутов, блокирование записей.
  • Сервис печати. Рабочая станция может ставить файлы в очередь для печати на сервере и получать информацию об очереди печати.
  • Сервис сообщений. SMB поддерживает простую передачу сообщений со следующими функциями: послать простое сообщение; послать широковещательное сообщение; послать начало блока сообщений; послать текст блока сообщений; послать конец блока сообщений; переслать имя пользователя; отменить пересылку; получить имя машины.

Из-за большого количества приложений, которые используют функции API, предоставляемые NetBIOS, во многих сетевых ОС эти функции реализованы в виде интерфейса к своим транспортным протоколам. В NetWare имеется программа, которая эмулирует функции NetBIOS на основе протокола IPX, существуют программные эмуляторы NetBIOS для Windows NT и стека TCP/IP.

для чего нужно нам сие ценное знание? (editorial)

Как-то раз задал мне один коллега каверзный вопрос. Ну вот, говорит, знаешь ты, что такое модель OSI... И для чего тебе это нужно, какая от этого знания практическая польза: разве что повыпендриваться перед чайниками? Неправда, польза от этого знания суть системный подход при решении многих пракрического свойства задач. Например:

  • troubleshooting (
обнаружение и устранение неполадок)

Приходит к вам как к админу(опытному сетевику) юзер(просто приятель) и говорит -- у меня тут "не соединяет". Нету, говорит, сети и все тут. Начинаете разбираться. Так вот, исходя из опята наблюдения за ближними своими, я заметила, что действия человека, "не осознающего модель OSI в сердце своем", отличаются характерной хаотичностью: то провод подергает, то вдруг в браузере что-то поковыряет. И приводит это зачастую к тому, что двигаясь без направления такой "специалист" подергает что угодно и где угодно, кроме как в области неполадки, убив кучу своего и чужого времени. При осознании же существования уровней взаимодействия движение будет более последовательным. И хотя отправная точка может быть разной (в каждой попадавшейся мне книге рекомнедации несколько различались), общая логическая посылка поиска неисправности такова -- если на уровне Х взаимодействие осуществляется корректно, то и на уровне Х-1 скорее всего тоже все в порядке. По крайней мере для каждого конкретногомомента времени. Производя траблшутинг в IP-сетях лично я начинаю "копать" от второго уровня стека DOD, он же третий уровень OSI, он же Internet Protocol. Во первых потому, что наиболее легко произвести "поверхностный осмотр пациента" (пациент скорее пингуется, чем не пингуется), ну и во вторых, если, слава те Господи, пингуется, можно отринуть малоприятные манипуляции с тестированием кабеля, сетевых карт и разборок и прочими приятными вещами;) Хотя в особо тяжелых случаях придется начинать все-таки с уровня первого, причем самым серьезным образом.

  • взаимопонимание с коллегами

Для иллюстрирования этого пункта приведу вам в качестве примера такую байку из жизни. Однажды знакомые мои из одной небольшой фирмы позвали меня в гости помочь разобраться, почему сеть нехорошо работает, и дать какие-нибудь рекомендации на сей счет. Прихожу я в контору. А у них там оказывается даже админ есть, называемый по старой доброй традиции "программист" (а вообще-то он FoxPro в основном занимается;) -- старой доперестроечной закалки IT-специалист. Ну я у него спрашиваю, что у вас за сеть? Он: "В смысле? Ну просто сеть". Сеть, в общем, как сеть. Ну я наводящие вопросы: на сетевом уровне какой протокол используется? Он: "А это ГДЕ?" Я уточняю: "Ну IP или IPX или что там у вас..." "О" -- говорит, -- "кажется да: IPX/еще-там-что-то!" Кстати, "еще-там-что-то", как вы могли заметить, от сетевого уровня чуть-чуть повыше расположен, ну да не суть... Что характерно, он эту сеть построил и даже худо бедно сопровождал. Не удивительно что она зачахла-то... ;) А знал бы про OSI -- в 5 минут бы схемку нацарапал -- от 10Base-2 до прикладных программ. И не пришлось бы под стол лазить -- коаксиальные провода обозревать.

  • изучение новых технологий

На этом важном аспекте я уже останавливалась в предисловии и еще раз повторюсь: при изучении нового протокола следует в первую же очередь разобраться а) в каком стеке(ах) протоколов его место и б) в какой именно части стека и с кем взаимодействует снизу и кто с ним сверху может... :) И полноя ясность в голове от этого наступит. А форматы сообщений да API разновсякие -- ну это уже дело техники:)

Сетевая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model) - абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов.

Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Несмотря на существование других моделей, большинство сетевых производителей сегодня разрабатывают свои продукты на основе этой структуры.

Уровни OSI

Каждый уровень модели OSI отвечает за часть процесса обработки по подготовке данных к передаче по сети.

Согласно модели OSI в процессе передачи данные буквально проходят сверху вниз по уровням модели OSI отправляющего компьютера и вверх по уровням модели OSI принимающего компьютера. На принимающем компьютере происходит процесс, обратный инкапсуляции. Биты прибывают на физический уровень модели OSI принимающего компьютера. В процессе перемещения вверх по уровням OSI принимающего компьютера данные поступят на прикладной уровень.

Уровень Название Описание 1 Описание 2
7. Прикладной Это уровень, с которым работают пользователи конечных продуктов. Их не волнует, как передаются данные, зачем и через какое место… Они сказали "ХОЧУ!" - а мы, программисты, должны им это обеспечить. В качестве примера можно взять на рассмотрение любую сетевую игру: для игрока она работает на этом уровне. Когда пользователь хочет отправить данные, например, электронную почту, на прикладном уровне начинается процесс инкапсуляции. Прикладной уровень отвечает за обеспечение сетевого доступа к приложениям. Информация проходит через верхние три уровня и, попадая вниз, на транспортный уровень, считается данными.
6. Представительский (Введение в XML , SMB) Здесь программист имеет дело с данными, полученными от низших уровней. В основном, это конвертирование и представление данных в удобоваримом для пользователя виде.
5. Сеансовый (TLS , SSL сертификаты для для сайта, почты , NetBios) Этот уровень позволяет пользователям осуществлять "сеансы связи". То есть именно на этом уровне передача пакетов становится для программиста прозрачной, и он может, не задумываясь о реализации, непосредственно передавать данные, как цельный поток. Здесь на сцену вступают протоколы HTTP, FTP , Telnet, SMTP и т.д.
4. Транспортный (Порты TCP , UDP) Осуществляет контроль над передачей данных (сетевых пакетов). То есть, проверяет их целостность при передаче, распределяет нагрузку и т.д. Этот уровень реализует такие протоколы, как TCP, UDP и т.д. Для нас представляет наибольший интерес. На транспортном уровне данные разбиваются на более легко управляемые сегменты, или блоки PDU транспортного уровня, для упорядоченной транспортировки по сети. Блок PDU описывает данные так, как они движутся с одного уровня модели OSI на другой. Кроме того, блок PDU транспортного уровня содержит такую информацию, как номера портов, порядковые номера и номера квитирования, которые используются для надежной транспортировки данных.
3. Сетевой (IP, ICMP протокол диагностики перегрузки сети) Логически контролирует адресацию в сети, маршрутизацию и т.д. Должен быть интересен разработчикам новых протоколов и стандартов. На этом уровне реализованы протоколы IP, IPX, IGMP, ICMP, ARP. В основном, управляется драйверами и операционными системами. Сюда влезать, конечно, стоит, но только когда ты знаешь, что делаешь, и полностью в себе уверен. На сетевом уровне каждый сегмент, поступивший с транспортного уровня, становится пакетом. Пакет содержит логическую адресацию и другие управляющие данные уровня 3.
2. Канальный (WI-FI , Что такое Ethernet) Этот уровень контролирует восприятие электронных сигналов логикой (радиоэлектронными элементами) аппаратных устройств. То есть, взаимодействуя на этом уровне, аппаратные средства превращают поток битов в электрические сигналы и наоборот. Нас он не интересует, потому что мы не разрабатываем аппаратные средства, чипы и т.д. Уровень касается сетевых карт, мостов, свичей, рутеров и т.д. На канальном уровне каждый пакет, поступивший с сетевого уровня, становится фреймом. Кадр содержит физический адрес и данные об исправлении ошибок.
1. Аппаратный (Физический) (лазер, электричество, радио) Контролирует передачи физических сигналов между аппаратными устройствами, входящими в сеть. То есть управляет передачей электронов по проводам. Нас он не интересует, потому что все, что находится на этом уровне, контролируется аппаратными средствами (реализация этого уровня - это задача производителей хабов, мультиплексоров, повторителей и другого оборудования). Мы не физики-радиолюбители, а геймдевелоперы. На физическом уровне фрейм становится битами. По сетевой среде биты передаются по одному.

Мы видим, что, чем выше уровень - тем выше степень абстракции от передачи данных, к работе с самими данными. Это и есть смысл всей модели OSI: поднимаясь все выше и выше по ступенькам ее лестницы, мы все меньше и меньше заботимся о том, как данные передаются, мы все больше и больше становимся заинтересованными в самих данных, нежели в средствах для их передачи. Нас, как программистов, интересуют уровни 3, 4 и 5. Мы должны использовать средства, которые они предоставляют, для того чтобы построить 6 и 7 уровни, с которыми смогут работать конечные пользователи.

Сетевой уровень

На сетевом уровне OSI реализованы протоколы IP(Структура межсетевого протокола IPv4 ,IPv6), IPX, IGMP, ICMP, ARP.

Нужно понимать почему возникла необходимость к построению сетевого уровня, почему сети построенные с помощью средств канального и физического уровня не смогли удовлетворять требования пользователей.

Создать сложную, структурированную сеть с интеграцией различных базовых сетевых технологий, можно и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Естественно в целом трафик в такой сети складывается случайным образом, но с другой стороны он характеризуется и некоторыми закономерностями. Как правило, в такой сети некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда им необходим доступ к ресурсам компьютеров другого отдела. Поэтому в зависимости от сетевого трафика компьютеры в сети разделяют на группы, которые называют сегменты сети. Компьютеры объединяются в группу, если большая часть их сообщений предназначена (адресована) компьютерам этой же группы. Разделение сети на сегменты, могут осуществлять мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Таким образом, одна сеть распадается на отдельные подсети. Из этих подсетей в дальнейшем могут быть построены составные сети достаточно крупных размеров.

Идея разбиения на подсети - это основа построения составных сетей.

Сеть называется составной (internetwork или internet), если она может быть представлена в виде совокупности нескольких сетей. Сети, входящие в составную сеть, называются подсетями (subnet), составляющими сетями или просто сетями, каждая из которых может работать на основе собственной технологии канального уровня (хотя это и не обязательно).

Но, воплощение этой идеи в жизнь с помощью повторителей, мостов, и коммутаторов имеет очень существенные ограничения и недостатки.

    В топологии сети построенной как с помощью повторителей, так и мостов или коммутаторов, должны отсутствовать петли. Действительно, мост или коммутатор может решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. Хотя в то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет образования резервных путей.

    Логические сегменты сети, расположенные между мостами или коммутаторами, слабо изолированы друг от друга. Они не защищены от широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Администратор должен вручную ограничивать количество широковещательных пакетов, которое разрешается генерировать некоторому узлу в единицу времени. В принципе некоторым образом удалось ликвидировать проблему широковещательных штормов с использованием механизма виртуальных сетей(Настройка VLAN Debian D-Link), реализованного во многих коммутаторах. Но в этом случае, хотя и возможно достаточно гибко создавать изолированные по трафику группы станций, но при этом они изолированы полностью, то есть узлы одной виртуальной сети не могут взаимодействовать с узлами другой виртуальной сети.

    В сетях, построенных на основе мостов и коммутаторов, достаточно сложно решается задача управления трафиком на основе значения данных, содержащихся в пакете. В таких сетях это возможно только с помощью пользовательских фильтров, для задания которых администратору приходится иметь дело с двоичным представлением содержимого пакетов.

    Реализация транспортной подсистемы только средствами физического и канального уровней, к которым относятся мосты и коммутаторы, приводит к недостаточно гибкой, одноуровневой системе адресации: в качестве адреса станции получателя используется MAC -адрес - адрес, который жестко связан с сетевым адаптером.

Все приведенные недостатки мостов и коммутаторов связаны только с тем, что они работают по протоколам канального уровня. Все дело в том, что эти протоколы в явном виде не определяют понятие часть сети (или подсеть, или сегмент), которое можно было бы использовать при структуризации большой сети. Поэтому разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.

В сегодняшней статье я хочу вернуться к основам, и расскажу о модели взаимодействия открытых систем OSI . Данный материал будет полезен начинающим системным администраторам и всем тем, кто интересуется построением компьютерных сетей.

Все составляющие сети, начиная со среды передачи данных и заканчивая оборудованием, функционируют и взаимодействуют друг с другом согласно своду правил, которые описаны в так называемой модели взаимодействия открытых систем .

Модель взаимодействия открытых систем OSI (Open System Interconnection) разработана международной организацией по стандартам ISO (Inernational Standarts Organization).

Согласно модели OSI, данные, передаваемые от источника к адресату, проходят семь уровней . На каждом уровне выполняется определенная задача, что в итоге не только гарантирует доставку данных в конечный пункт, но и делает их передачу независимой от применяемых для этого средств. Таким образом, достигается совместимость между сетями с разными топологиями и сетевым оборудованием.

Разделение всех сетевых средств по уровням упрощает их разработку и применение. Чем выше уровень, тем более сложную задачу он решает. Первые три уровня модели OSI (физический, канальный, сетевой ) тесно связаны с сетью и используемым сетевым оборудованием. Последние три уровня (сеансовый, уровень представления данных, прикладной ) реализуются средствами операционной системы и прикладных программ. Транспортный уровень выступает в качестве посредника между этими двумя группами.

Перед пересылкой через сеть, данные разбиваются на пакеты , т.е. порции информации, организованные определенным образом, чтобы они были понятны принимающим и передающим устройствам. При отправке данных пакет последовательно обрабатывается средствами всех уровней модели OSI, начиная с прикладного и заканчивая физическим. На каждом уровне к пакету добавляется управляющая информация данного уровня (называемая заголовком пакета ), которая необходима для успешной передачи данных по сети.

В результате это сетевое послание начинает напоминать многослойный бутерброд, который должен быть “съедобным” для получившего его компьютера. Для этого необходимо придерживаться определенных правил обмена данными между сетевыми компьютерами. Такие правила получили названия протоколов .

На принимающей стороне пакет проходит обработку средствами всех уровней модели OSI в обратном порядке, начиная с физического и заканчивая прикладным. На каждом уровне соответствующие средства, руководствуясь протоколом уровня, читают информацию пакета, затем удаляют информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передают пакет средствами следующего уровня. Когда пакет дойдет до прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Теперь рассмотрим работу каждого уровня модели OSI подробнее:

Физический уровень – самый нижний, за ним находится непосредственно канал связи, через который осуществляется передача информации. Он участвует в организации связи, учитывая особенности среды передачи данных. Так, он содержит все сведения о среде передачи данных: уровень и частоту сигнала, наличие помех, уровень затухания сигнала, сопротивление канала и т.д. Кроме того, именно он отвечает за передачу потока информации и преобразование ее в соответствии с существующими методами кодирования. Работа физического уровня изначально возлагается на сетевое оборудование.
Стоит отметить, что именно с помощью физического уровня определяется проводная и беспроводная сеть. В первом случае в качестве физической среды используется кабель, во втором – любой вид беспроводной связи, например радиоволны или инфракрасное излучение.

Канальный уровень выполняет самую сложную задачу – обеспечивает гарантированную передачу данных с помощью алгоритмов физического уровня и проверяет корректность полученных данных.

Прежде чем инициировать передачу данных, определяется доступность канала их передачи. Информация передается блоками, которые носят название кадров , или фреймов . Каждый такой кадр снабжается последовательностью бит в конце и начале блока, а также дополняется контрольной суммой. При приеме такого блока на канальный уровень получатель должен проверить целостность блока и сравнить принятую контрольную сумму с контрольной суммой, идущей в его составе. Если они совпадают, данные считаются корректными, иначе фиксируется ошибка и требуется повторная передача. В любом случае отправителю отсылается сигнал с результатом выполнения операции, и так происходит с каждым кадром. Таким образом, вторая важная задача канального уровня – проверка корректности данных.

Канальный уровень может реализовываться как аппаратно (например, с помощью коммутаторов), так и с помощью программного обеспечения (например, драйвера сетевого адаптера).

Сетевой уровень необходим для выполнения работы по передаче данных с предварительным определением оптимального пути движения пакетов. Поскольку сеть может состоять из сегментов с разными топологиями, главная задача сетевого уровня – определить кратчайший путь, попутно преобразовывая логические адреса и имена сетевых устройств в их физическое представление. Этот процесс носит название маршрутизации , и важность его трудно переоценить. Обладая схемой маршрутизации, которая постоянно обновляется в связи с возникновением разного рода “заторов” в сети, передача данных осуществляется в максимально короткие сроки и с максимальной скоростью.

Транспортный уровень используется для организации надежной передачи данных, которая исключает потерю информации, ее некорректность или дублирование. При этом контролируются соблюдение правильной последовательности при передаче-получении данных, деление их на более мелкие пакеты или объединение в более крупные для сохранения целостности информации.

Сеансовый уровень отвечает за создание, сопровождение и поддержание сеанса связи на время, необходимое для завершения передачи всего объема данных. Кроме того, он производит синхронизацию передачи пакетов, осуществляя проверку доставки и целостности пакета. В процессе передачи данных создаются специальные контрольные точки. Если при передаче-приеме произошел сбой, недостающие пакеты отправляются заново, начиная с ближайшей контрольной точки, что позволяет передать весь объем данных в максимально короткий срок, обеспечивая в целом хорошую скорость.

Уровень представления данных (или, как его еще называют, представительский уровень ) является промежуточным, его основная задача – преобразование данных из формата для передачи по сети в формат, понятный более высокому уровню, и наоборот. Кроме того, он отвечает за приведение данных к единому формату: когда информация передается между двумя абсолютно разными сетями с разным форматом данных, то прежде, чем их обработать, необходимо привести их к такому виду, который будет понятен как получателю, так и отправителю. Именно на этом уровне применяются алгоритмы шифрования и сжатия данных.

Прикладной уровень – последний и самый верхний в модели OSI. Отвечает за связь сети с пользователями – приложениями, которым требуется информация от сетевых служб всех уровней. С его помощью можно узнать все, что происходило в процессе передачи данных, а также информацию об ошибках, возникших в процессе их передачи. Кроме того, данный уровень обеспечивает работу всех внешних процессов, осуществляемых за счет доступа к сети – баз данных, почтовых клиентов, менеджеров загрузки файлов и т.д.

На просторах сети интернет я нашел картинку, на которой неизвестный автор представил сетевую модель OSI в виде бургера. Считаю, это очень запоминающийся образ. Если вдруг в какой-то ситуации (например, на собеседовании при устройстве на работу) вам понадобиться по памяти перечислить все семь уровней модели OSI в правильном порядке – просто вспомните данную картинку, и это вам поможет. Для удобства я перевел названия уровней с английского на русский язык:На сегодня это всё. В следующей статье я продолжу тему и расскажу про .

Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).

Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.

Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.

Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.

Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.

Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.

Перечислим их:

  • 7. Прикладной уровень (application layer)
  • 6. Представительский уровень или уровень представления (presentation layer)
  • 5. Сеансовый уровень (session layer)
  • 4. Транспортный уровень (transport layer)
  • 3. Сетевой уровень (network layer)
  • 2. Канальный уровень (data link layer)
  • 1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень

Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень

Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).

Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.

Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень

Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.

Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо ) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Физический уровень

Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.

Заключение

Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.