Понятия модели и моделирования. Моделирование в информатике - это что такое? Виды и этапы моделирования

Экономическая модель — это упрощенное изображение экономической действительности, позволяющее выделить наиболее главное в сжатой компактной форме.

Экономические модели должны отвечать ряду требований:

  • содержательность;
  • реалистичность принятых посылок и допущений;
  • возможность построения прогнозов;
  • возможность информационного обеспечения;
  • возможность проверки.

Среди экономистов нет общего мнения, какие требования отнести к приоритетным.

Основные этапы создания экономической модели

Создание любой теоретической модели, в том числе и экономической, проходит несколько этапов:

  • отбор переменных;
  • определение допущений, которые необходимо сделать чтобы не усложнять модель;
  • выдвижение одного или несколько предположений, гипотез, объясняющих взаимосвязь параметров;

Переменные, используемые в теории — это конкретные величины, имеющие различное значение.

Различают эндогенные и экзогенные переменные:

Эндогенные переменные — это переменные, которые непосредственно входят в модель, являясь объектов изучения (в нашем примере это количество товаров: зерно и ракеты)

Экзогенные переменные — это переменные, которые воздействуют на исследуемые величины, но не являются объектом изучения (в нашем примере, на количество товаров, производимых обществом оказывают влияние наличие и уровень технологии). Для удобства их принимают за постоянные величины.

Допущения (научные абстракции) позволяют избежать чрезмерных сложностей при создании теории. (в модели к таким допущениям относятся: ограничение производства двумя товарами, заданный объем ресурсов, постоянный уровень научно-технического прогресса, отсутствие внешнеэкономических связей).

Гипотеза — основной элемент модели. Гипотеза — это попытка объяснить в одном утверждении, как связаны между собой эндогенные переменные.

В нашем примере, анализ поведения общества в условиях позволяет заметить, что некоторого количества одного товара неизбежно вынуждает сокращать производство определенного количества другого товара и наоборот. Это позволяет выдвинуть гипотезу о существовании альтернативных издержек производства.

Гипотезы, как правило, предполагают формирование функциональной зависимости между неизвестными в виде формулы, таблицы и графика.

Основные типы экономических моделей

В экономической теории используются, главным образом, модели двух типов: оптимизационные и равновесные.

Оптимизационные модели используются при анализе поведения отдельных экономических агентов (потребителей, производителей и т.д.) для нахождения оптимальных величин. В этих моделях используются предельные показатели: , предельный доход, и т.п. Данный анализ принято называть (от англ. margin).

Модели используются при исследовании взаимоотношений между экономическими агентами. При анализе предполагается, что система находится в равновесии, если взаимодействующие силы сбалансированы и отсутствует внутренний импульс к нарушению равновесия.

Значение равновесных моделей объясняется тем, что отдельные субъекты рынка, домохозяйства и фирмы могут оптимизировать свое положение, лишь обладая полной информацией о рынке предлагаемого ими блага и о рынках потребляемых ими ресурсов. Отсутствие такой информации вынуждает субъекта принимать решение: какое количество товара он мог бы купить (или продать) при некотором изменении его цены и при условии, что цены всех прочих товаров остаются неизменными.

Модель равновесия между спросом и предложением является основой микроэкономического анализа рынка.

Типы экономических моделей

Как наука экономическая теория имеет не только собственный предмет (что изучается), но и особые методы исследования (как изучается). Важнейшим методом является построение экономических моделей.

Моделями мы широко пользуемся в нашей повседневной жизни, даже не осознавая это. Типичная модель — карта города, т.е. его описанный по определенным правилам образ. На ней мы видим расположение улиц и транспортных магистралей, интересующих нас объектов. Такая карта не содержит, однако, информации, представляющейся в данном случае неважной (время работы магазинов, чистота улиц, состояние дорожного покрытия и т.д.).

Аналогично экономическая модель представляет собой упрошенное формальное описание интересующих нас сторон экономического явления.

Модели бывают двух типов: оптимизационные и равновесные. Оптимизационные модели используются для изучения поведения отдельных экономических агентов или их групп и показывают, как экономические агенты (их группы) максимизируют свое благосостояние. Примерами могут являться модель поведения фирмы, модель поведения отдельного потребителя. Равновесные модели нужны для изучения взаимоотношений между экономическими агентами и их группами. Пример — модель формирования рыночной цены под воздействием спроса всех покупателей и предложения всех продавцов.

Хорошая экономическая модель обладает рядом свойств:

  • она не перегружена деталями, содержащейся в ней информации должно быть не больше, чем необходимо для решения поставленной задачи;
  • посылки и допущения модели содержательны и реалистичны;
  • есть возможность собрать информацию, соответствующую условиям модели;
  • модель позволяет объяснить и предсказать реально наблюдаемые экономические явления.

Очень большую роль в экономике играют математические модели. Их применение позволяет не просто делать общие предположения относительно разных событий, но достаточно точно рассчитать количественные последствия тех или иных решений и тем самым дать конкретные рекомендации правительству и бизнесу. Вот, например, весьма актуальный вопрос о вступлении России во Всемирную торговую организацию (ВТО). Сторонники вступления говорят о его плюсах, противники акцентируют внимание на минусах, но только грамотные экономисты на основе эконометриче- ских моделей могут сказать: «Здесь выигрыш составит примерно столько-то, а в этой сфере весьма вероятны такие-то потери».

Модели строятся для нормативного и позитивного анализа. Позитивный анализ устанавливает причины и следствия экономических явлений, не давая им оценки. Такой анализ отвечает на вопросы типа: «Что и почему происходит в экономике сегодня?», «Что и почему происходило вчера?», «Что будет, если?..» Например, русский богатырь на распутье видит указатели: «Направо пойдешь — коня потеряешь. Налево пойдешь — голову потеряешь» и т.д. Все это — типичные примеры позитивных утверждений.

Напротив, нормативный анализ содержит оценку желательности тех или иных последствий. Круг его вопросов: «Что надо сделать, чтобы?..» Нормативный анализ содержит, следовательно, рекомендательную часть. Между двумя этими видами анализа существует тесная взаимосвязь: нормативные утверждения влияют на выбор предмета позитивного анализа, тогда как результаты последнего облегчают достижение нормативных целей.

Например, признано необходимым сократить инфляцию в экономике. Это нормативное утверждение. Но достичь данной цели можно по-разному:

  • повысив налоги для сокращения дефицита государственного бюджета;
  • уменьшив государственные расходы;
  • заморозив цены на основные виды сырья и энергоносителей;
  • ограничив рост курса доллара по отношению к рублю и т.д.

Выбрать лучший способ позволит позитивный анализ. Например, повышение налогов приведет к тому-то и тому-то, уменьшение государственных расходов — к тому-то и тому-то... Экономическая теория не избавляет, таким образом, людей от выбора, но позволяет сделать этот выбор более осознанным и ответственным.

Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

Одни и те же устройства, процессы, явления и т. д. (далее - «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи. Ниже приведена классификация и дана характеристика наиболее общих видов моделей.

Требования к моделям

Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

  • адекватность , то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования , когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например, метод последовательных приближений;
  • точность , то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;
  • универсальность , то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;
  • целесообразная экономичность , то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, - результат компромисса между отпущенными ресурсами и особенностями используемой модели;
  • и др.
  • аналитическим путем, то есть выводом из физических законов, математических аксиом или теорем;
  • экспериментальным путем, то есть посредством обработки результатов эксперимента и подбора аппроксимирующих (приближенно совпадающих) зависимостей.

Математические модели более универсальны и дешевы, позволяют поставить «чистый» эксперимент (то есть в пределах точности модели исследовать влияние какого-то отдельного параметра при постоянстве других), прогнозировать развитие явления или процесса, отыскать способы управления ими. Математические модели - основа построения компьютерных моделей и применения вычислительной техники.

Результаты математического моделирования нуждаются в обязательном сопоставлении с данными физического моделирования - с целью проверки получаемых данных и для уточнения самой модели. С другой стороны, любая формула - это разновидность модели и, следовательно, не является абсолютной истиной , а всего лишь этап на пути её познания.

Промежуточные виды моделей

К промежуточным видам моделей можно отнести:

Трёхмерная компьютерная модель

  • графические модели . Занимают промежуточное место между эвристическими и математическими моделями. Представляют собой различные изображения:
    • эскизы . Этому упрощенному изображению некоторого устройства в значительной степени присущи эвристические черты;
    • чертежи . Здесь уже конкретизированы внутренние и внешние связи моделируемого (проектируемого) устройства, его размеры;
    • полигональная модель в компьютерной графике как образ объекта, «сшитый» из множества многоугольников.
  • аналоговые модели . Позволяют исследовать одни физические явления или математические выражения посредством изучения других физических явлений, имеющих аналогичные математические модели;
  • и др.

Существует и другие виды «пограничных» моделей, например, экономико-математическая и т. д.

Модель принципа действия

Модель принципа действия (принципиальная модель , концептуальная модель ) характеризует самые существенные (принципиальные) связи и свойства реальной системы. Это - основополагающие физические, биологические, химические, социальные и т. п. явления, обеспечивающие функционирование системы, или любые другие принципиальные положения, на которых базируется планируемая деятельность или исследуемый процесс. Стремятся к тому, чтобы количество учитываемых свойств и характеризующих их параметров было небольшим (оставляют наиболее важные), а обозримость модели - максимальной, так чтобы трудоемкость работы с моделью не отвлекала внимание от сущности исследуемых явлений. Как правило, описывающие подобные модели параметры - функциональные, а также физические характеристики процессов и явлений. Принципиальные исходные положения (методы, способы, направления и т. д.) лежат в основе любой деятельности или работы.

Так, принцип действия технической системы - это последовательность выполнения определенных действий, базирующихся на определенных физических явлениях (эффектах), которые обеспечивают требуемое функционирование этой системы. Примеры моделей принципа действия: фундаментальные и прикладные науки (например, принцип построения модели, исходные принципы решения задачи), общественная жизнь (например, принципы отбора кандидатов, оказания помощи), экономика (например, принципы налогообложения, исчисления прибыли), культура (например, художественные принципы).

Работа с моделями принципа действия позволяет определить перспективные направления разработки (например, механика или электротехника) и требования к возможным материалам (твердые или жидкие, металлические или неметаллические, магнитные или немагнитные и т. д.).

Правильный выбор принципиальных основ функционирования предопределяет жизнеспособность и эффективность разрабатываемого решения. Так, сколько бы ни совершенствовали конструкцию самолета с винтомоторным двигателем, он никогда не разовьет сверхзвуковую скорость, не говоря уже о полетах на больших высотах. Только использование другого физического принципа, например, реактивного движения и созданного на его основе реактивного двигателя , позволит преодолеть звуковой барьер.

Графическим представлением моделей принципа действия служат блок-схема , функциональная схема , принципиальная схема .

Например, для технических моделей эти схемы отражают процесс преобразования вещества, как материальной основы устройства, посредством определенных энергетических воздействий с целью реализации потребных функций (функционально-физическая схема ). На схеме виды и направления воздействия, например, изображаются стрелками, а объекты воздействия - прямоугольниками.

Структурная модель

Четкого определения структурной модели не существует. Так, под структурной моделью устройства могут подразумевать:

  • структурную схему , которая представляет собой упрощенное графическое изображение устройства, дающее общее представление о форме, расположении и числе наиболее важных его частей и их взаимных связях;
  • топологическую модель , которая отражает взаимные связи между объектами, не зависящие от их геометрических свойств.

Под структурной моделью процесса обычно подразумевают характеризующую его последовательность и состав стадий и этапов работы, совокупность процедур и привлекаемых технических средств, взаимодействие участников процесса.

Например, - это могут быть упрощенное изображение звеньев механизма в виде стержней, плоских фигур (механика), прямоугольники с линиями со стрелками (теория автоматического управления , блок-схемы алгоритмов), план литературного произведения или законопроекта и т. д. Степень упрощения зависит от полноты исходных данных об исследуемом устройстве и потребной точности результатов. На практике виды структурных схем могут варьироваться от несложных небольших схем (минимальное число частей, простота форм их поверхностей) до близких к чертежу изображений (высокая степень подробности описания, сложность используемых форм поверхностей).

Возможно изображение структурной схемы в масштабе. Такую модель относят к структурно-параметрической . Её примером служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, радиусы колес-окружностей и т. д.) нанесены в масштабе, что позволяет дать численную оценку некоторым исследуемым характеристикам.

Для повышения полноты восприятия на структурных схемах в символьном (буквенном, условными знаками) виде могут указывать параметры, характеризующие свойства отображаемых систем. Исследование таких схем позволяет установить соотношения (функциональные, геометрические и т. п.) между этими параметрами, то есть представить их взаимосвязь в виде равенств f (x 1 , х 2 , …) = 0, неравенств f (x 1 , х 2 , …) > 0 и в иных выражениях.

Параметрическая модель

Под параметрической моделью понимается математическая модель, позволяющая установить количественную связь между функциональными и вспомогательными параметрами системы. Графической интерпретацией такой модели в технике служит чертеж устройства или его частей с указанием численных значений параметров.

Классификация моделей

По целям исследований

В зависимости от целей исследования выделяют следующие модели:

  • функциональные . Предназначены для изучения особенностей работы (функционирования) системы, её назначения во взаимосвязи с внутренними и внешними элементами;
  • функционально-физические . Предназначены для изучения физических (реальных) явлений, используемых для реализации заложенных в систему функций;
  • модели процессов и явлений , такие как кинематические, прочностные, динамические и другие. Предназначены для исследования тех или иных свойств и характеристик системы, обеспечивающих её эффективное функционирование.

По особенностям представления

С целью подчеркнуть отличительную особенность модели их подразделяют на простые и сложные, однородные и неоднородные, открытые и закрытые, статические и динамические, вероятностные и детерминированные и т. д. Стоит отметить, что когда говорят, например, о техническом устройстве как простом или сложном, закрытом или открытом и т. п., в действительности подразумевают не само устройство, а возможный вид его модели, таким образом подчеркивая особенность состава или условий работы.

  • Четкого правила разделения моделей на сложные и простые не существует. Обычно признаком сложных моделей служит многообразие выполняемых функций, большое число составных частей, разветвленный характер связей, тесная взаимосвязь с внешней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определяется необходимыми для его исследования затратами времени и средств, потребным уровнем квалификации, то есть зависит от конкретного случая и конкретного специалиста.
  • Разделение систем на однородные и неоднородные проводится в соответствии с заранее выбранным признаком: используемые физические явления, материалы, формы и т. д. При этом одна и та же модель при разных подходах может быть и однородной, и неоднородной. Так, велосипед - однородное механическое устройство, поскольку использует механические способы передачи движения, но неоднородное по типам материалов, из которых изготовлены отдельные части (резиновая шина, стальная рама, пластиковое седло).
  • Все устройства взаимодействуют с внешней средой, обмениваются с нею сигналами, энергией, веществом. Модели относят к открытым , если их влиянием на окружающую среду или воздействием внешних условий на их состояние и качество функционирования пренебречь нельзя. В противном случае системы рассматривают как закрытые , изолированные.
  • Динамические модели, в отличие от статических , находятся в постоянном развитии, их состояние и характеристики изменяются в процессе работы и с течением времени.
  • Характеристики вероятностных (иными словами, стохастических ) моделей случайным образом распределяются в пространстве или меняются во времени. Это является следствием как случайного распределения свойств материалов, геометрических размеров и форм объекта, так и случайного характера воздействия внешних нагрузок и условий. Характеристики детерминированных моделей заранее известны и точно предсказуемы.

Знание этих особенностей облегчает процесс моделирования, так как позволяет выбрать вид модели, наилучшим образом соответствующей заданным условиям. Этот выбор основывается на выделении в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или предшествующим опытом. Наиболее часто в процессе моделирования ориентируются на создание простой модели, что позволяет сэкономить время и средства на её разработку. Однако повышение точности модели, как правило, связано с ростом её сложности, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и потребной точности и указывает на предпочтительный вид модели.

Ссылки

Литература

  • Хорошев А.Н. Введение в управление проектированием механических систем: Учебное пособие. - Белгород, 1999. - 372 с. -

В описываемой статье мы разберем подробно, что такое модель в информатике. Рассмотрим виды, а также способы проектирования. В данном разделе имеется множество полезных знаний, которые позволят будущим специалистам в сфере информационных технологий работать без каких-либо усилий. Для того чтобы решить любую задачу, причем неважно, научную или производственную, следует придерживаться цепочки: объект, модель, алгоритм, программа, результат, реализация. Нужно обратить внимание на второй пункт. Если этого звена не будет, то и сама проектировка не подлежит исполнению. Для чего же используется модель, и что под этим словом подразумевается? Далее раскроем этот вопрос.

Модель

Что такое модель в информатике? Благодаря ей можно составить образ какого-либо объекта, который реально существует. Также при необходимости можно отобразить все его свойства и признаки.

Для того чтобы решить какую-то задачу, следует сделать ее модель, ведь именно она и будет использоваться при дальнейшем проектировании. В школьном курсе информатики данные понятия вводятся уже в шестом классе. Однако в самом начале учат детей лишь пониманию, что же это такое.

Классификация

Описываемым термином можно назвать описание какого-либо процесса, его изображение, схему, уменьшенную копию реального объекта и так далее. Учитывая все вышеперечисленное, следует сказать, что модель - довольно широкое понятие. Его можно разделить на группы: материальное, идеальное.

Под первым типом понимают комплекс данных, который представляет собой реальный объект. Это может быть либо тело, либо процесс и так далее. Данная группа делится еще на два типа: физические, аналоговые. Эта классификация полностью условная, так как между указанными двумя подвидами нет никакой четкой черты.

Идеальную модель охарактеризовать еще труднее, потому что она связана полностью с воображением человека, его восприятием мира. К ней также можно отнести и любое произведение искусства, в том числе картины, прозу, спектакли и так далее.

Цели моделирования

Рассматривая, что такое модель в информатике, необходимо также сказать и о целях ее создания.

Моделирование - довольно важный этап, так как он позволяет осуществить большое количество задач. Именно об этом мы далее и поговорим.

Для начала, моделирование позволит человеку больше узнать о том, что его окружает. Если говорить в обширном смысле, то в самой древности люди собирали какие-то данные, информацию, факты и передавали из поколения в поколение. Примером можно назвать модель нашего мира, которая называется “глобус”. В прошлые века, как правило, моделирование было построено на несуществующих объектах, с трудом познаваемыми человеком, которые на данный момент уже имеют свою реализацию в качестве материального предмета. Большинство из них прочно закрепились в нашей жизни. Речь может идти о зонтах, мельницах и так далее.

На данный момент модели систем информатики касаются путей достижения максимального эффекта от принимаемых решений, а также обращают внимание на последствия какого-либо процесса или же действия. Если говорить о последнем подпункте, то в пример можно привести модель, которая выясняет, какие последствия будут в результате повышения стоимости проезда либо после утилизации каких-либо отходов под землей.

Задачи моделирования

Рассматривая, что такое модель в информатике, необходимо еще сказать о задачах данного способа проектирования. Описываемый процесс имеет несколько общих целей, о которых мы и поговорим далее. Если рассматривать более детально, то задачами являются этапы решения каких-либо проблем. То есть, в принципе, таковой можно назвать небольшую цель, с которой необходимо справиться, чтобы достигнуть определенных высот.

Классификация задач

При этом делятся данные задачи на две группы. Речь идет о прямых и обратных. Что касается последних, то подобные формулировки ставят перед разработчиком вопросы типа: “Как увеличить эффективность до максимума?” или “Какое же действие полностью удовлетворит имеющееся условие?” Если говорится о прямых, то такие задачи ставят перед человеком вопросы о том, что будет, если разработчик поступит так или иначе. Нужно заметить: любая прямая формулировка имеет исходные данные, а также ставит конкретные условия.

Вербальная модель

Также необходимо рассказать о видах моделей в информатике. Рассмотрим первую: вербальную. Такой метод моделирования позволяет работать с идеальными или абстрактными вопросами. Следует заметить, что в науке считаются двумя основными видами математический и информационный. Хоть и вербальный на данный момент не сильно распространен, однако он используется. Под ним подразумевают, что все задачи, цели и так далее описываются с помощью букв и связанных предложений. К таковым моделям можно отнести обычную художественную литературу, составленный протокол, какие-либо правила, информацию, описание предмета, явления и так далее.

Математическая модель

Математическая модель - это в информатике один из главных видов проектирования. Она еще известна, как алгоритмическая. Следует заметить, что между математическим и информационным видами граница максимально условная. Об этом уже говорилось ранее.

Если не задаваться сложными терминами, а попытаться объяснить простым языком, то описываемая модель необходима для того, чтобы решить любую задачу или достигнуть цель при помощи математической точки зрения. Следует заметить, что каждый человек в реальной жизни занимается постоянно проектированием такой модели. Допустим, обычная бытовая задача, например, купить что-то в магазине, требует составления таковой. Человек знает, сколько стоят продукты. Необходимо посчитать, какая сумма в итоге нужна для осуществления покупки, сложив все данные. Это является обычным примером математической модели.

Информационная модель

Следует заметить, что с этим видом моделирования нужно ознакомиться любому человеку, который видит свое будущее в IT-сфере. Как правило, все информационные модели создаются при помощи компьютерной техники. Причем речь идет не только конкретно о проектировании каких-то диаграмм, но используются еще и таблицы, рисунки, чертежи, схемы и так далее.

В целом информационная модель представляет собой свойства того объекта, который мы отображаем, максимально описывая его состояние, а также то, насколько он связан с окружающим миром, отношение к другим внешним предметам и влияние на них. Следует отметить, что информационной моделью может служить обычный текст, рисунок, словесное описание, чертеж, формула и так далее.

Такой вид отличается от других вышеперечисленных тем, что он является данными. То есть модель не имеет материального воплощения, так как считается примитивным комплексом информации, представленной в разном виде.

Системный подход к созданию модели

Классификацию моделей в информатике мы уже рассмотрели, теперь следует сказать о том, какой подход следует использовать, чтобы составить идеальную схему.

Необходимо понять, что такое система. Это комплекс элементов, которые взаимодействуют между собой, а также работают вместе для того, чтобы выполнить определенную задачу. Построение модели связано с использованием системного подхода. Объектом будет считаться любой комплекс, который функционирует в качестве единого в специальной среде. Иногда бывает так, что проект довольно сложный, поэтому систему делят на две части.

Цель использования

Приведем примеры моделей в информатике, для того чтобы понять, какими целями руководствуются производители при создании записи.

Следует заметить, что есть такие виды, как учебные, имитационные, игровые и так далее. Рассмотрим их.

К учебным относятся все материалы, при помощи которых осуществляется обучение.

К опытным следует добавить модели уменьшенной копии, создаваемые на основе реальных объектов.

Имитационные могут служить информацией, которая позволит понять, что произойдет в результате какого-либо действия. К примеру, если человек проводит реформу, он должен составить такую модель. Это поможет приблизительно понять то, как люди отреагируют на новые изменения. Либо же, например, чтобы человеку сделать операцию по пересадке какого-либо органа, в самом начале исследований проводится большое количество опытов. Их также можно назвать имитационной моделью. Таким образом, она представляет собой систему проб и ошибок. Это позволяет принимать более оправданные решения.

Игровой моделью является система, которая ставит определенные объекты в какие-либо рамки. Это может быть экономическая, деловая или военная игра. Таким образом, человек способен понять поведение определенного объекта в нужной ему среде.

Научно-техническую следует использовать для того, чтобы изучить какое-либо явление и процесс, который трудно исследовать в обычной жизни. Это может быть создание прибора, имитирующий грозовой разряд, либо же модель движения, полностью копирующая солнечную систему.

Способ представления

Подытоживая все вышесказанное о моделях данных в информатике, необходимо разузнать, как же представляется созданная запись.

Она бывает материальная и нематериальная. К первому виду нужно отнести все копии, которые были сняты с существующих объектов. Таким образом, их можно взять в руки, потрогать, понюхать и так далее. Они даже способны имитировать какие-либо свойства оригинального объекта, а также его действия. Данные материальные модели являются опытным методом проектирования.

К нематериальным относятся те, которые работают на теории. Они идеальные либо же абстрактные. Эта категория также имеет несколько типов. Речь идет об информационных, а еще воображаемых вариантах. Первый представляет собой перечень данных, который касается определенного объекта. Таковыми можно назвать таблицы, рисунки, схемы и так далее.

Однако многих их интересует, почему же данная модель класса информатики считается нематериальной. Текст хоть и напечатан, таблица составлена, но его потрогать нельзя. Именно поэтому данная модель является абстрактной. К слову, среди информационных вариантов записи имеются наглядные примеры.

К воображаемой модели относят то, что называется творческим процессом, то есть все происходящее в сознании человека. Это побуждает его создать на основе данной схемы оригинальный объект.

По способу отображения действительности различают три ос­новных вида моделей - эвристические, физические и матема­тиче­ские.

Эвристические модели , как правило, представляют собой об­разы, рисуемые в воображении человека. Их описание ве­дется словами естественного языка и, обычно, неоднозначно и субъек­тивно. Эти модели неформализуемы, т. е. не описыва­ются фор­мально-логическими и математическими выраже­ниями, хотя и рождаются на основе представления реальных процессов и явле­ний. Эвристическое моделирование - основное средство вырвать­ся за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии че­ловека, его опыта и эрудиции. Эвристиче­ские модели используют­ся на начальных этапах проектирова­ния (или других видов дея­тельности), когда сведения о разраба­тываемом объекте еще скуд­ны. На последующих этапах проек­тирования эти модели заменя­ются на более конкретные и точ­ные.

Физические модели - материальны, но могут отличаться от реального объекта или его части размерами, числом и материа­лом элементов. Выбор размеров ведется с соблюдениемтеории подобия. К физическим моделям относятся реальные изделия, образцы, экспериментальные и натурные модели.

Физические модели подразделяются на объемные (модели и ма­кеты) и плоские (тремплеты).

Под моделью понимают изделие, являющееся упрощенным по­добием исследуемого объекта.

Под тремплетом понимают изделие, являющееся плоским мас­штабным отображением объекта в виде упрощенной ортого­нальной проекции или его контурным очертанием. Тремплеты вырезают из пленки, картона и т. п. и применяют при исследова­нии и проектировании зданий, установок, сооружений.

Под макетом понимают изделие, собранное из моделей или тремплетов.

Физическое моделирование - основа наших знаний и средство проверки наших гипотез и результатов расчетов. Такая модель позволяет охватить явление или процесс во всемих многообра­зии, наиболее адекватна и точна, но достаточно дорога, трудо­емка и менее универсальна. В том или ином виде с физическими моделя­ми работают на всех этапах проектирования.

Математические модели - формализуемые, т. е. представля­ют собой совокупность взаимосвязанных математических и фор­мально-логических выражений, как правило, отображающих ре­альные процессы и явления (физические, психические, социаль­ные и т. д.). Модели по форме представления могут быть:

Аналитические, их решения ищутся в замкнутом виде, в виде функциональных зависимостей. Удобны, при анализе сущности описываемого явления или процесса, но отыскание их решений бывает весьма затруднено;

Численные, их решения - дискретный ряд чисел (таблицы). Модели универсальны, удобны для решения сложных задач, но не наглядны и трудоемки при анализе и установлении взаимо­связей между параметрами. В настоящее время такие модели реализуют в виде программных комплексов - пакетов программ для расчета на компьютере. Программные ком­плексы бывают прикладные, привязанные к предметной об­ласти и конкретной системе, явлению, процессу, и общие, реализующие универ­сальные математические соотношения (например, расчет сис­темы алгебраических уравнений).

Построение математических моделей возможно следующими способами:

Аналитическим путем, т. е. выводом из физических законов, математических аксиом или теорем;

Экспериментальным путем, т. е. посредством обработки ре­зультатов эксперимента и подбора аппроксимирующих (при­ближенно совпадающих) зависимостей.

Математические модели более универсальны, дешевы, позво­ляют поставить "чистый" эксперимент (т. е. в пределах точности модели исследовать влияние какого-то отдельного фактора при постоянстве других), прогнозировать развитие явления или про­цесса. Математические модели - основа построения компьютер­ных моделей и применения вычислительной техники. Резуль­таты математического моделирования нуждаются в обязатель­ном со­поставлении с данными физического моделирования - с целью проверки полученных данных и для уточнения самой мо­дели.

К промежуточным между эвристическими и математическими моделями можно отнести графические модели , представляю­щие различные изображения - схемы, графики, чертежи. Так, эскизу (упрощенному изображению) некоторого объекта в зна­чительной степени присущи эвристические черты, а в чертеже уже конкрети­зируются внутренние и внешние связи моделируе­мого объекта.

Промежуточными также являются и аналоговые модели . Они позволяют исследовать одни физические явления или математи­че­ские выражения посредством изучения других физических явле­ний, имеющих аналогичные математические модели.

Выбор типа модели зависит от объема и характера исходной информации о рассматриваемом объекте и возможностей проек­тировщика, исследователя. По возрастанию степени соответст­вия реальности модели можно расположить в следующий ряд: эври­стические (образные) - математические - физические (экс­пери­ментальные).

Технические системы различаются по назначению, устрой­ст­ву и условиям функционирования. Следовательно, можно и нужно вносить соответствующие различия и в их модели.

В зависимости от целей исследования выделяют следующие модели:

Функциональные, предназначенные для изучения функцио­нального назначения элементов системы, внутренних связей и связей с другими системами;

Функционально-физические, предназначенные для изучения сущности и назначения физических явлений, используемых в системе, их взаимосвязей;

Модели процессов и явлений, таких как кинематические, проч­ностные, динамические и другие, предназначенные для иссле­дования тех или иных характеристик системы, обеспечиваю­щих ее эффективное функционирование.

Модели также подразделяют на простые и сложные, однород­ные и неоднородные, открытые и закрытые, статические и дина­мические, вероятностные и детерминированные.

Часто говорят о технической системе как простой или слож­ной, закрытой или открытой и т. п. В действительности же под­ра­зумевается не сама система, а возможный вид ее модели, ак­центи­руется особенность ее устройства или условий работы.

Четкого правила разделения систем на сложные ипростые не существует. Обычно признаком сложных систем служит много­об­разие выполняемых функций, большое число составных час­тей, разветвленный характер связей, тесная взаимосвязь с внеш­ней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определя­ется необходимыми для ее исследования затратами времени и средств, потребным уровнем квалификации, т. е. за­висит от кон­кретного случая и конкретного специалиста.

Подразделение систем на однородные и неоднородные произ­водится в соответствии с заранее выбранным призна­ком: исполь­зуемые физические явления, материалы, формы и т. д. При этом одна и та же система при разных подходах может быть и однород­ной, и неоднородной. Так, велосипед - однородная механическая система, поскольку использует механические способы передачи движения, но неоднородная по типам материалов, из которых из­готовлены отдельные части (резиновая шина, стальная рама, ко­жаное седло).

Все системы взаимодействуют с внешней средой, обменива­ются с нею сигналами, энергией, веществом. Системы относят к открытым , если их влиянием на окружающую среду или воз­дей­ствием внешних условий на их состояние и качество функ­циони­рования пренебречь нельзя. В противном случае системы рассмат­ривают какзакрытые , изолированные.

Динамические системы , в отличие отстатических , нахо­дятся в постоянном развитии, их состояние и характеристики изменяют­ся в процессе работы и с течением времени.

Характеристики вероятностных (иными словами,стохас­ти­ческих) систем случайным образом распределяются в про­странст­ве или меняются во времени. Это является следствием как случай­но, о распределения свойств материалов, геометриче­ских размеров и форм объекта, так и случайного характера воз­действия на него внешних нагрузок и условий. Характеристикидетерминирован­ных систем заранее известны и точно предска­зуемы.

Знание этих особенностей облегчает процесс моделирова­ния, так как позволяет выбрать вид модели, наилучшим образом соот­ветствующей заданным условиям.

Выбор модели того или иного вида основывается на выделе­нии в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или пред­ше­ствующим опытом. Наиболее часто в процессе моделирова­ния ориентируются на создание простой модели, поскольку это позво­ляет сэкономить время и средства на ее разработку. Од­нако повы­шение точности модели, как правило, связано с рос­том ее сложно­сти, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и по­требной точности и ука­зывает на предпочтительный вид мо­дели.

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его аэродинамических качеств важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.