Как работает сотовая вышка. Какие стандарты мобильной связи бывают

Сотовая связь (мобильная связь) - один из видов мобильной радиосвязи, в базе которого лежит сотовая сеть. Это более современная разработка телефонной связи на сей день. Главная особенность состоит в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базисных станций (БС). Соты отчасти перекрываются и совместно образуют сеть. На безупречной (ровненькой и в отсутствие застройки) поверхности зона покрытия одной БС представляет собой круг, потому составленная из их сеть имеет вид сот с шестиугольными ячейками (сотами).

Выгоды сотовой связи явны: мобильный телефон дает свободу передвижения по всей местности обслуживания сети, каждый абонент может избрать более подходящий тариф обслуживания. Не считая услуг по телефонной связи, сотовая связь предлагает дополнительные услуги: это и голосовая почта, и переадресация, SMS, MMS, EMS, GPRS, EDGE, 3G и т.д. (находится в зависимости от модели мобильного телефона).

Сотовую сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном спектре, и коммутирующее оснащение, позволяющее определять текущее положение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия 1-го приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Главные составляющие сотовой сети - это мобильники и базисные станции. Базисные станции обычно располагают на крышах построек и вышках. Будучи включённым, мобильник прослушивает эфир, находя сигнал базисной станции. После чего телефон отправляет станции собственный уникальный идентификационный код. Телефон и станция поддерживают неизменный радиоконтакт, временами обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT -450) либо по цифровому (DAMPS, CDMA, GSM, UMTS ). В том случае телефон выходит из поля действия базисной станции, он налаживает связь с иной (англ. handover ).

Сотовые сети могут состоять из базисных станций различного эталона, что позволяет улучшить работу сети и сделать лучше её покрытие.

Сотовые сети различных операторов соединены вместе, также со стационарной телефонной сетью. Это позволяет абонентам 1-го оператора делать звонки абонентам другого оператора, с мобильников на стационарные и со стационарных на мобильные.

Операторы могут заключать меж собой договоры роуминга. Благодаря подобным договорам абонент, находясь вне зоны покрытия собственной сети, может совершать и принимать звонки через сеть другого оператора. Чаше всего, это осуществляется по завышенным тарифам.

Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

Многие ли из нас задумываются, что происходит после того, как мы нажимаем кнопку вызова на мобильном телефоне? Как работают сотовые сети ?

Скорее всего, нет. Чаще всего мы набираем федеральный номер собеседника на автомате, как правило, по делу, поэтому что там и как устроено нас не интересует в конкретный момент времени. А ведь это удивительные вещи. Как можно позвонить человеку, находящемуся в горах или посреди океана? Почему во время разговора мы можем плохо слышать друг друга, а то и вовсе прерваться. Наша статья попробует пролить свет на принцип работы сотовой связи.

Итак, большая часть плотно заселенной территории России, покрыта так называемыми БС, что без сокращения именуются Базовыми Станциями. Многие могли обращать на них свое внимание, путешествуя между городами. В открытом поле, Базовые станции больше похожи на вышки, которые имеют красный и белый цвет. А вот в городе такие БС продуманно размещены на крышах нежилых высоток. Эти вышки способны поймать сигнал от любого сотового телефона, находящегося территориально в радиусе не более, чем 35 километров. "Общение" между БС и телефоном происходит через специальный служебный или голосовой канал.

Как только человек набирает нужный ему номер на мобильном устройстве, аппарат находит самую близко расположенную к нему Базовую Станцию поэтому специальному служебному каналу и просит у нее выделить голосовой канал. Вышка после получения запроса от устройства отправляет запрос на так называемый контроллер, который сокращенно будем называть BSC. Этот самый контроллер перенаправляет запрос уже на коммутатор. "Умный" коммутатор MSC определит, к какому оператору подключен вызываемый абонент.

Если оказывается, что звонок совершается на телефон внутри одной сети, например от абонента Билайн другому абоненту этого оператора, или внутри МТС, внутри Мегафон и так далее, то коммутатор начнет выяснять местоположение вызываемого абонента. Благодаря Home Location Register коммутатор найдет, где находится необходимый человек. Он может быть где угодно, дома, на работе, на даче или вообще в другой стране. Это не помешает коммутатору перевести звонок на соответствующий коммутатор. И тут "клубок" начнет "разматываться". То есть звонок от коммутатора - "ответчика" пойдет на контроллер - "ответчика", затем на его Базовую Станцию и на мобильный телефон соответственно.

Если же коммутатор выяснит, что вызываемый абонент принадлежит другому оператору, то отправит запрос на коммутатор уже другой сети.
Согласитесь, схема достаточно простая, но трудно представима. Как "умная" Базовая Станция находит телефон, отправляет запрос, а коммутатор сам определяет оператора и другого коммутатора. Что такое Базовая станция на самом деле? Оказывается, это несколько железных шкафов, которые располагаются либор под самой крышей здания, на чердаке или в специальном контейнере. Главное условие - помещение должно отлично кондиционироваться.

Логично, что у БС есть антенна, которая и помогает ей "ловить" связь. Антенна у БС состоит из нескольких частей (секторов), каждый из которых отвечает за территорию. Часть антенны, которая расположена вертикально отвечает за связь с мобильными телефонами, а круглая предназначены для связи с контроллером.

Один сектор способен одновременно принимать звонки от семидесяти телефонных аппаратов. Если учесть, что одна БС может состоять из шести секторов, то одновременно она спокойно обслужит 6*72=432 звонка.

Как правило, такой мощности Базовой станции хватает "с головой". Конечно, случаются ситуации, когда все население нашей страны начинает одновременно звонить друг другу. Это новый Год. Некоторым достаточно лишь произнести в трубку заветную фразу «С Новым Годом!», другие же готовы проговаривать часы с безлимитным тарифом от "Корпорации Связи" , обсуждая гостей и планы на всю ночь.

Однако вне зависимости от продолжительности разговора, Базовые станции не справляются, и дозвониться до абонента бывает очень сложно. Но в будние дни большую часть года БС из шести секторов вполне достаточно, тем более для оптимальной загруженности оператору подбирают Станции в соответствии с заселенностью территории. Некоторые операторы отдают свое предпочтение большим БС в целях улучшения качества предоставляемой связи.

Существует три диапазона, в которых может работать БС и которые определяют количество поддерживаемых аппаратов и охватываемое расстояние. В диапазоне 900 МГЦ станция способна охватить большую территорию, а вот в диапазоне 1800 МГц расстояние существенно сократится, зато увеличится число подключаемых передатчиков. Третий диапазон в 2100 МГц предполагает уже связь нового поколения - 3G.
Понятно, что в малонаселенных пунктах целесообразнее установить Базовую Станцию на 900 МГц, а вот в городе подойдет 1800 МГц, чтобы лучше проникать сквозь толстые бетонные стены, причем понадобится этих БС в десять раз больше, чем в поселке. Отметим, что одна БС может поддерживать три диапазона сразу.

Станции в режиме 900 МГц охватывают территорию радиусом в 35 км, однако если в данный момент она обслуживает мало телефонов, то может "пробить" и до 70 км. Естественно, наши мобильные телефоны могут "находить" БС даже на расстоянии 70 км. Базовые Станции разработаны так, чтобы максимально покрывать земную поверхность и обеспечивать большое количество людей связью именно на земле, поэтому при возможности ловить сигналы на расстоянии минимум 35 километров, на такое же расстояние, но в небо, Базовые Станции не "пробивают".

Для того, чтобы обеспечить своих пассажиров сотовой связью, некоторые авиакомпании начинают размещать маленькие БС на бортах самолетов. Связь "небесной" Базовой Станции с "земной" осуществляется с помощью спутникового канала. Так как работа мобильных устройств может помешать процессу полета, бортовые БС легко могут включаться / выключаться, имеют несколько режимов работы, вплоть до полного отключения передачи голосовых сообщений. Во время полета телефон может случайно быть переведен на базовую станцию с худшим сигналом или без свободных каналов. В таком случае звонок прервется. Все это тонкости работы сотовой связи в небе в движении.

Помимо самолетов, некоторые проблемы возникают и у жителей пентхаусов. Даже безлимитный тариф и ВИП - условия у оператора сотовой связи не помогут в случае разных БС. Житель квартиры на высоком этаже, переходя из одной комнаты в другую, потеряет связь. Это может произойти из-за того, что телефон в одной комнате "видит" одну БС, а в другой он "обнаруживает" другую. Поэтому при разговоре связь прерывается, так как эти БС находятся на относительном расстоянии друг от друга и даже не считаются "соседними" у одного оператора.

Мобильная связь - это радиосвязь между абонентами, местоположение одного или нескольких из которых меняется. Одним из видов мобильной связи является сотовая связь.

Сотовая связь - один из видов радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность: общая зона покрытия делится на соты, определяющиеся зонами покрытия базовых станций . Соты перекрываются и вместе образуют сеть. На идеальной поверхности зона покрытия одной базовой станции представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками .

Принцип действия сотовой связи

Итак, для начала рассмотрим, как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC - Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module) , по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.


Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI - International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56бит кодирование.

На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи.

Системы подвижной радиосвязи строятся по схеме "точка-многоточие" (point-multipoint), поскольку абонент может находиться в любой точке соты, контролируемой базовой станцией. В простейшем случае круговой передачи мощность радиосигнала в свободном пространстве теоретически уменьшается обратно пропорционально квадрату расстояния. Однако на практике сигнал затухает гораздо быстрее - в лучшем случае пропорционально кубу расстояния, поскольку энергия сигнала может поглощаться или уменьшаться на различных физических препятствиях, и характер таких процессов сильно зависит от частоты передачи. При уменьшении мощности на порядок охватываемая площадь соты уменьшается на два порядка.

"ФИЗИОЛОГИЯ"

Важнейшими причинами повышенного затухания сигналов являются теневые зоны, создаваемые зданиями или естественными возвышенностями на местности. Исследования условий применения подвижной радиосвязи в городах показали, что даже на очень близких расстояниях теневые зоны дают затухание до 20дБ. Другой важной причиной затухания является листва деревьев. Например, на частоте 836МГц в летнее время, когда деревья покрыты листвой, уровень принимаемого сигнала оказывается приблизительно на 10дБ ниже, чем в том же месте зимой, при отсутствии листьев. Замирания сигналов от теневых зон иногда называют медленными с точки зрения условий их приема в движении при пересечении такой зоны.

Важное явление, которое приходится учитывать при создании сотовых систем подвижной радиосвязи - отражение радиоволн, и, как следствие, их многолучевое распространение. С одной стороны, это явление полезно, так как оно позволяет радиоволнам огибать препятствия и распространяться за зданиями, в подземных гаражах и тоннелях. Но с другой стороны, многолучевое распространение порождает такие трудные для радиосвязи проблемы, как растягивание задержки сигнала, релеевские замирания и усугубление эффекта Доплера.

Растягивание задержки сигнала получается из-за того, что сигнал, проходящий по нескольким независимым путям разной протяженности, принимается несколько раз. Поэтому повторяющийся импульс может выйти за пределы отведенного для него интервала времени и исказить следующий символ. Искажения, возникающие за счет растянутой задержки, называются межсимвольной интерференцией. При небольших расстояниях растянутая задержка не опасна, но если соту окружают горы, задержка может растянуться на многие микросекунды (иногда 50-100 мкс).

Релеевские замирания вызываются случайными фазами, с которыми поступают отраженные сигналы. Если, например, прямой и отраженный сигналы принимаются и противофазе (со сдвигом фазы на 180°), то суммарный сигнал может быть ослаблен почти до нуля. Релеевские замирания для данного передатчика и заданной частоты представляют собой нечто вроде амплитудных "провалов", имеющих разную глубину и распределенных случайным образом. В этом случае при стационарном приемнике избежать замираний можно просто переставив антенну. При движении же транспортного средства такие "провалы" проходятся ежесекундно тысячами, отчего происходящие при этом замирания называются быстрыми.

Эффект Доплера проявляется при движении приемника относительно передатчика и состоит в изменении частоты принимаемого колебания. Подобно тому, как тон шума движущегося поезда или автомобиля кажется неподвижному наблюдателю несколько выше при приближении транспортного средства и несколько ниже при его удалении, частота радиопередачи смещается при движении приемопередатчика. Более того, при многолучевом распространении сигнала отдельные лучи могут давать смещение частоты в ту или другую сторону одновременно. В результате, за счет эффекта Доплера получается случайная частотная модуляция передаваемого сигнала подобно тому, как за счет релеевских замираний происходит случайная амплитудная модуляция. Таким образом, в целом многолучевое распространение создает большие трудности в организации сотовой связи, в особенности для подвижных абонентов, что связано с медленными и быстрыми замираниями амплитуды сигнала в движущемся приемнике. Преодолеть эти трудности удалось с помощью цифровой техники, которая позволила создать новые методы кодирования, модуляции и выравнивания характеристик каналов.

"АНАТОМИЯ"

Передача данных осуществляется по радиоканалам. Сеть GSM работает в диапазонах частот 900 или 1800 МГц. Более конкретно, например, в случае рассмотрения диапазона 900МГц подвижной абонентский аппарат передает на одной из частот, лежащих в диапазоне 890-915 МГц, а принимает на частоте, лежащей в диапазоне 935-960 МГц. Для других частот принцип тот же, изменяются только численные характеристики.

По аналогии со спутниковыми каналами направление передачи от абонентского аппарата к базовой станции называется восходящим (Rise), а направление от базовой станции к абонентскому аппарату - нисходящим (Fall). В дуплексном канале, состоящем из восходящего и нисходящего направлений передачи, для каждого из названных направлений применяются частоты, различающиеся точно на 45МГц. В каждом из указанных выше частотных диапазонов создаются по 124 радиоканала (124 для приема и 124 для передачи данных, разнесенных на 45МГц) шириной по 200кГц каждый. Этим каналам присваиваются номера (N) от 0 до 123. Тогда частоты восходящего (F R) и нисходящего (F F) направлений каждого из каналов можно вычислить по формулам: F R (N) = 890+0.2N (МГц), F F (N) = F R (N) + 45 (МГц).

В распоряжение каждой базовой станции может быть предоставлено от одной до 16 частот, причем число частот и мощность передачи определяются в зависимости от местных условий и нагрузки.

В каждом из частотных каналов, которому присвоен номер (N) и который занимает полосу 200кГц, организуются восемь каналов с временным разделением (временные каналы с номерами от 0 до 7), или восемь канальных интервалов.

Система с разделением частот (FDMA) позволяет получить 8 каналов по 25кГц, которые, в свою очередь, разделяются по принципу системы с разделением времени (TDMA) еще на 8 каналов. В GSM используется GMSK-модуляция, а несущая частота изменяется 217 раз в секунду для того, чтобы компенсировать возможное ухудшение качества.

Когда абонент получает канал, ему выделяется не только частотный канал, но и один из конкретных канальных интервалов, и он должен вести передачу в строго отведенном временном интервале, не выходя за его пределы - иначе будут создаваться помехи в других каналах. В соответствии с вышеизложенным работа передатчика происходит в виде отдельных импульсов, которые происходят в строго отведенном канальном интервале: продолжительность канального интервала составляет 577мкс, а всего цикла - 4616мкс. Выделение абоненту только одного из восьми канальных интервалов позволяет разделить во времени процесс передачи и приема путем сдвига канальных интервалов, выделяемых передатчикам подвижного аппарата и базовой станции. Базовая станция (BS) всегда передает на три канальных интервала раньше подвижного аппарата (HS).

Требования к характеристикам стандартного импульса описываются в виде нормативного шаблона изменения мощности излучения во времени. Процессы включения и выключения импульса, которые сопровождаются изменением мощности на 70дБ, должны укладываться в промежуток времени длительностью всего 28мкс, а рабочее время, в течение которого передаются 147 двоичных разрядов, составляет 542.8мкс. Значения мощности передачи, указанные в таблице ранее, относятся именно к мощности импульса. Средняя же мощность передатчика оказывается в восемь раз меньше, так как 7/8 времени передатчик не излучает.

Рассмотрим формат нормального стандартного импульса. Из него видно, что не все разряды несут полезную информацию: здесь в середине импульса располагается обучающая последовательность из 26 двоичных разрядов для защиты сигнала от помех многолучевого распространения. Это - одна из восьми специальных легко распознаваемых последовательностей, по которой принятые разряды правильно располагаются во времени. Такая последовательность ограждается одноразрядными указателями (PB - Point Bit), а с обеих сторон этой настроечной последовательности располагается полезная кодированная информация в виде двух блоков по 57 двоичных разрядов, ограждаемых, в свою очередь, граничными разрядами (BB - Border Bit) - по 3бит с каждой стороны. Таким образом, импульс переносит 148бит данных, которые занимают 546.12мкс временной интервал. К этому времени добавляется еще промежуток, равный 30.44мкс защитного времени (ST - Shield Time), в течение которого передатчик "молчит". По продолжительности этот промежуток соответствует времени передачи 8.25 разряда, но передачи в это время не происходит.

Последовательность импульсов образует физический канал передачи, который характеризуется номером частоты и номером временного канального интервала. На основе этой последовательности импульсов организуется целая серия логических каналов, которые различаются своими функциями. Кроме каналов, передающих полезную информацию, существует еще ряд каналов, передающих сигналы управления. Реализация таких каналов и их работа требуют четкого управления, которое реализуется программными средствами.


СОТОВАЯ СВЯЗЬ СОТОВАЯ СВЯЗЬ

СО́ТОВАЯ СВЯЗЬ (англ. cellular phone, подвижная радиорелейная связь), вид радиотелефонной связи, в которой конечные устройства - мобильные телефоны (см. МОБИЛЬНЫЙ ТЕЛЕФОН) - соединены друг с другом с помощью сотовой сети - совокупности специальных приемопередатчиков (базовых станций). Базовые станции связываются друг с другом с помощью каналов фиксированной связи, а с обслуживаемыми мобильными телефонами - с помощью радиоволн. Область, где могут находится обслуживаемые отдельной базовой станцией мобильные телефоны, называется сотой (ячейкой, англ. cell). Один сотовый телефон обычно в каждый момент времени виден несколькими базовыми станциями, и, согласно используемым в сотовой сети стандартам и протоколам, связывается с той базовой станцией, которая имеет наименьшее ослабление сигнала (и при этом у этой станции не исчерпан лимит на число обслуживаемых телефонов). Таким образом, когда мобильный телефон перемещается вместе с использующим его человеком, и попадает в области видимости разных базовых станций, то его соединение с сотовой сетью не разрывается, и он может совершать и принимать звонки, а также пользоваться всеми услугами сотовой сети.
Компании, которые предоставляют доступ к сотовым сетям, называются операторами сотовой связи.
Мощность радиопередатчика мобильного телефона в сотовой сети гораздо меньше (в сотни раз) мощности передатчика базовой станции, поэтому мобильные телефоны имеют сравнительно небольшие размеры и безопасны в использовании. Уровень излучения мобильных телефонов регламентируются специальными международными стандартами безопасности. Существует множество стандартов и технологий мобильной связи.
Сети мобильной связи первого поколения
Первые сотовые сети были построены с использованием аналоговых стандартов - стандартов первого поколения (1G, first generation). Самые распространенные из них - NMT и AMPS. Обычно рядом с названием стандарта записывают частоту в мегагерцах, рядом с которой выделен частотный диапазон для взаимодействия базовой станции с мобильными телефонами, например базовые станции сетей NMT-450 общаются с сотовыми телефонами на частоте 450 МГц.
Сеть на основе стандарта NMT (Nordic Mobile Telephone) - первого стандарта сотовой связи - начала работать в странах Северной Европы в 1981. Также NMT был первым стандартом мобильной связи, используемым в России (1991) и в США.
В аналоговых стандартах для обеспечения одновременной работы нескольких мобильных телефонов в одной соте, а также базовых станций различных сот, использовалось только разделение каналов по частоте (FDMA, Frequency Division Multiple Access, одновременный доступ с разделением по частоте), что в условиях дефицита свободных частот означает работу в одной соте максимум только 10-20 телефонов и большие размеры сот. Это было приемлемо только при относительно низкой распространенности мобильной связи. Также аналоговые стандарты не давали никакой защиты от помех, а подслушать разговор иногда можно было с помощью простого радиоприемника.
В 2000-е гг. везде в мире сети первого поколения вытесняются сетями второго и третьего поколений.
Сети мобильной связи второго поколения
В сетях второго поколения (2G, second generation) данные между базовыми станциями и мобильными телефонами передаются в цифровом виде. Это позволило использовать в стандартах DAMPS и пришедшему ему на смену GSM для одновременной работы с одной базовой станции нескольких телефонов временное разделение (TDMA, Time Division Multiple Access, одновременный доступ с разделением по времени) - каждый частотный канал разделен на несколько так называемых «таймслотов», т. е. интервалов времени, в течение которых канал занимает один телефон. Таким образом, одна базовая станция может обслуживать до нескольких сотен телефонов одновременно. А мощности передатчиков в мобильных телефонах второго поколения были снижены, так как потери при передаче оцифрованного звука гораздо ниже.
В стандарте CDMA (Code Division Multiple Access, одновременный доступ с разделением по коду) используются более сложные методы разделения радиоэфира между различными мобильными телефонами. Причем, как много ни было бы разных телефонов в соте, и сколько бы базовых станций ни было бы соседями, каждый мобильный телефон использует для приема и передачи целую частотную полосу (канал) сравнительно большой ширины - 1,25 МГц в стандарте CDMA2000 1x. Чтобы различать сигналы разных телефонов и базовых станций, каждый передатчик имеет собственный код, который распространяется по всей ширине канала.
Самым популярным стандартом сотовой связи является именно стандарт второго поколения GSM - Global System for Mobile Communications (Глобальная система мобильной связи). Мобильными телефонами этого стандарта сейчас пользуются более миллиарда человек во всем мире.
Технологии передачи данных в сетях второго поколения
Но главным следствием перехода к цифровой форме сигнала стала возможность использовать мобильные телефоны для передачи не только голоса (звука), но и других видов информации. Первой подобной услугой, сделавшей возможным передачу текста между мобильными телефонами, был так называемый «сервис коротких сообщений» - Short Message Service (сокращенно SMS). SMS впервые появился в стандарте GSM (в декабре 1992 в сети британского оператора Vodaphone был произведен эксперимент по рассылке SMS), но позднее был реализован и в сетях на основе других стандартов. С помощью технологии SMS можно передавать не только короткие текстовые сообщения, но и простые картинки и звуки, а также выражать свои эмоции с помощью специальных изображений - смайликов (от smile - улыбка). Для этого используются технологии EMS и Nokia Smart Messaging.
Позднее, с совершенствованием мобильных телефонов и развитием компьютеризации, в сетях GSM были введены технологии для передачи компьютерных данных, доступа к сети Интернет (см. ИНТЕРНЕТ) . Первой такой технологией была CSD (Circuit Switched Data, передача данных через прямое подключение), в которой выделенный телефону таймслот используется для передачи данных со скоростью 9.6 килобит в секунду - таймслот выделяется точно так же, как и при совершении телефонных звонков. При этом телефон нельзя использовать по своему прямому назначению. Для увеличения скорости передачи была создана технология HSCSD (High Speed CSD, высокоскоростная CSD) - телефон получает несколько таймслотов сразу, также применяется специальный алгоритм для коррекции ошибок в зависимости от качества соединения. При использовании этой технологии в соте может не хватить таймслотов для всех мобильных телефонов, поэтому она не стала распространенной.
Самой распространенной технологией передачи данных является GPRS (General Packet Radio Service, служба пакетной радиопередачи данных общего пользования), которая позволяет использовать выделенные таймслоты сразу нескольким мобильным телефонам, использует различные алгоритмы при разном качестве связи с БС, различной загруженности БС. Каждый телефон использует различное количество таймслотов, освобождая их при отсутствии необходимости или запрашивая новые. Таймслоты делятся между телефонами с помощью пакетного разделения, как в компьютерных сетях. Количество таймслотов, которое может использовать телефон, ограничено аппаратно, и зависит от класса GPRS мобильного телефона. Скорость передачи асимметрична - если для получения информации телефон класса может использовать до 4-х таймслотов при 8-м и 10-м классах GPRS, то для передачи всего 1-2. Теоретический предел скорости для GPRS при идеальном соединении (21,4 килобит в секунду) и 5-и выделенных таймслотах составляет 107 килобит в секунду. Но реально средняя скорость работы GPRS находится на уровне 56 килобит в секунду. Мобильным телефонам при использовании технологии GPRS выделяются IP-адреса в Интернете, в большинстве случаев не уникальные.
Дальнейшим развитием технологии GPRS стала технология EDGE (Enhanced Data Rates for GSM Evolution, повышенная скорость передачи данных для развития GSM). В этой технологии, по сравнению с GPRS, применены новые схемы кодирования информации, а также изменен алгоритм обработки ошибок (ошибочно переданные пакеты не передаются заново, передается только информация для их восстановления). В результате, максимальная скорость передачи достигает 384 килобит в секунду.
Иногда технологию GPRS называют технологией мобильной связи «поколения 2,5» - 2.5G, а технологию EDGE - технологией 2.75G.
Для сетей CDMA2000 создана технология 1xRTT, позволяющая достигать скорости 144 килобит в секунду.
Назначение технологий передачи данных в сетях мобильной связи
Первоначально эти технологии использовались в мобильных телефонах для доступа в Интернет с помощью персональных компьютеров, и лишь затем, с дальнейшим развитием мобильных телефонов, предоставили доступ в Интернет непосредственно с мобильного телефона. Для получения информации на мобильный телефон использовалась технология WAP (Wireless Application Protocol, протокол для беспроводных приложений), которая предъявляла сравнительно небольшие требования к техническим характеристикам мобильного телефона. Странички создавались на специальном языке WML (Wireless Markup Language), приспособленном к особенностям мобильных телефонов - небольшому размеру экрана, только клавишному управлению, небольшим скоростям передачи данных, задержкам при загрузке страниц, и так далее. Более того, ввиду низкой производительности процессора и малого объема памяти мобильного телефона, для максимального облегчения работы мобильного браузера странички на этом языке обрабатывались не непосредственно, а с помощью промежуточного сервера (так называемого WAP-шлюза), который компилировал их в специальный байт-код, выполняемый мобильным телефоном. Именно за это - работу промежуточного сервера - операторы сотовой связи так высоко оценивают эту услугу.
Однако с совершенствованием мобильных телефонов вскоре произошли изменения. Во-первых, отпала необходимость в промежуточном сервере - теперь браузеры современных мобильных телефонов выполняют его работу самостоятельно. Во-вторых, на смену специализированному языку WML приходит стандарт xHTML - он отличается от повсеместно используемого в Интернете языка HTML только соблюдением некоторых специальных правил, а именно, спецификации XML. В-третьих, современные мобильные телефоны обладают вполне достаточным размером экрана для отображения обычных, предназначенных для компьютеров, страниц Интернета. В-четвертых, с развитием современного Интернета оказалось, что код HTML-страниц стал упрощаться и структурироваться, в связи с тем, что теперь он пишется преимущественно машинно. В связи с этими изменениями, многие современные телефоны вполне могут самостоятельно обрабатывать HTML.
На базе этих технологий передачи данных также были созданы дополнительные сервисы для мобильных телефонов - например, MMS(Multimedia Messaging System, система fпередачи мультимедийных сообщений). С помощью мобильного телефона теперь легко можно составить сообщение, содержащее текст, изображение, звук, видео или другие компьютерные файлы. Многие элементы MMS могут быть объединены в слайды, и принявший MMS телефон может показать презентацию, состоящую из них. Технически, когда отправляется MMS-сообщение, используется специализированный протокол передачи данных через обычное Интернет-соединение, например, через GPRS.
MMS-сообщения с мобильного телефона можно отправлять не только на другие мобильные телефоны, но и на адреса электронной почты - на электронный ящик придут все файлы, из которых состоит MMS. Каждое сообщение может быть отправлено сразу по нескольким адресам.
Если адресатом является номер другого мобильного телефона, поддерживающего MMS, то он напрямую закачивает содержимое сообщения по специальному протоколу, либо автоматически, либо по специальному запросу. А если принимающий сообщение мобильный телефон не поддерживает MMS, то он получает SMS-сообщение, содержащее ссылку в Интернете, перейдя по которой можно через Web посмотреть содержимое MMS либо с самого мобильного телефона, либо с персонального компьютера.
Однако большинство современных мобильных телефонов оснащено программами - клиентами электронной почты, и, по мере их совершенствования, MMS становится ненужным, вытесняется другими сервисами, например, BlackBerry.
Доступ в Интернет с мобильных телефонов может использоваться для тех же целей, что и в персональных компьютерах, например, для использования различных служб обмена сообщениями, вроде ICQ.
Мобильная связь третьего поколения
Скорости передачи данных в сетях второго поколения недостаточны для реализации многих новых задач мобильной связи, в частности, передачи высококачественного видео в реальном времени (видеофонии), современных фотореалистичных компьютерных игр через Интернет и других. Для обеспечения необходимых скоростей созданы новые стандарты и протоколы:
1. Стандарт UMTS (Universal Mobile Telecommunications System, универсальная система мобильной связи) на базе технологии W-CDMA (Wideband Code Division Multiple Access, широкополосный CDMA), частично совместимой с GSM. Скорость приема и передачи данных достигает 1920 килобит в секунду.
2. Технология 1xEV (evolution, развитие) для сетей CDMA2000. Скорость приема данных достигает 3,1 мегабит в секунду, а передачи - 1,8 мегабит в секунду.
3. Технологии TD-SCMA, HSDPA и HSUPA. Позволяют достичь еще более высоких скоростей. По состоянию на 2006 технологии W-CDMA предоставляют часто поддержку HSDPA. TD-SCMA разрабатываются.
Таким образом, современные технологии мобильной связи - это не столько технологии мобильной телефонии, сколько универсальные технологии передачи информации.


Энциклопедический словарь . 2009 .

Смотреть что такое "СОТОВАЯ СВЯЗЬ" в других словарях:

    Сотовая связь, сеть подвижной связи один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных … Википедия

    Один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично… … Словарь бизнес-терминов

    Сотовая связь третьего поколения - Сети сотовой связи третьего поколения (3rd Generation, или 3G) работают на частотах диапазона около 2 гигагерц и обеспечивают передачу данных на скорости до 2 мегабит в секунду. Такие характеристики позволяют использовать мобильный телефон, в… … Энциклопедия ньюсмейкеров

    ООО «Екатеринбург 2000» Тип Оператор сотовой связи Расположение … Википедия

    Статья содержит ошибки и/или опечатки. Необходимо проверить содержание статьи на соответствие грамматическим нормам русского языка … Википедия

    В Московском метрополитене работают сотовые телефоны стандарта GSM следующих сотовых операторов на следующих станциях. Содержание 1 «МТС» 2 «Билайн» 3 «МегаФон» … Википедия

    - … Википедия

    Сотовая связь один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть. Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты … Википедия

    Координаты: 56°49′53.36″ с. ш. 60°35′14.81″ в. д. / 56.831489° с. ш. 60.587447° в. д. … Википедия