Как работает центральный процессор компьютера. Несколько слов о наиболее распространенных процессорах персональных компьютеров

Пожалуй, ключевым достоинством персонального компьютера как платформы является его впечатляющая гибкость и возможности кастомизации, которые сегодня, благодаря появлению новых стандартов и типов комплектующих, кажутся практически безграничными. Если лет десять назад, произнося аббревиатуру "ПК", можно было с уверенностью представить себе белый железный ящик, опутанный проводами и жужжащий где-то под столом, то сегодня столь однозначных ассоциаций нет и быть не может.

Сегодняшний ПК может быть мощной рабочей станцией, ориентированной на производительность в вычислениях или рабочей машиной дизайнера, "заточенной" под качество двухмерной графики и быструю работу с данными. Может быть топовой игровой машиной или скромной мультимедийной системой, живущей под телевизором...

Иначе говоря, у каждого ПК сегодня свои задачи, которым соответствует тот или иной набор железа. Но как выбрать подходящее?

Начинать следует с центрального процессора. Видеокарта определит производительность системы в играх (и ряде рабочих приложений, использующих вычисления на GPU). Материнская плата - формат системы, её функционал "из коробки" и возможности подключения комплектующих и периферийных устройств. Однако именно процессор определит возможности системы в повседневных домашних задачах и работе.

Давайте рассмотрим, что важно при выборе процессора, а что - нет.

На что НИКОГДА не нужно обращать внимание

Производитель процессора

Как и в случае с видеокартами (да, впрочем, и со многими другими девайсами), наши соотечественники всегда рады превратить обыкновенный потребительский товар в нечто, что можно поднять на штандарты и пойти войной на сторонников противоположного лагеря. Можете представить себе ситуацию, в которой любители маринованных огурцов и консервированных помидоров разделили магазин баррикадой, покрывают друг друга последними словами и частенько прибегают к рукоприкладству? Согласитесь, звучит как полный бред... однако в сфере компьютерных комплектующих такое происходит сплошь и рядом!

Причем, как и любые сектанты, фанаты брендов видят мир исключительно разделенным на чёрное и белое. Все, абсолютно все товары с их любимым логотипом - это абсолютный идеал и само совершенство, а противоборствующие им решения - само воплощение зла, вместилище всех возможных недостатков.

О том, что у каждого из двух производителей центральных процессоров - соответственно, Intel и AMD , - есть полностью сформированные линейки продуктов, состоящие из совершенно разных по характеристикам девайсов с совершенно разной стоимостью, сектанты предпочитают умалчивать. Как, собственно, и о том, что в разных ценовых сегментах реальный лидер может меняться.

Рекомендация №1: Планируя сборку нового ПК или апгрейд старого, определитесь в первую очередь с бюджетом. Посчитайте сумму, которая у вас есть на руках, добавьте к ней некий резерв, который вы, в случае необходимости готовы добавить, а затем посмотрите, какие модели центральных процессоров в этот бюджет вписываются.

Чётко осознайте, что вы выбираете именно эти модели, и вам важны именно их характеристики. Что происходит, и кто лидирует в сегментах выше или ниже вашего бюджета - вас не касается. Вам важно только то, сколько производительности вы получите сейчас, за имеющиеся деньги.

"Игровой" или "не игровой" процессор

У процессора нет такой характеристики или функции, которая позволяла или не позволяла бы ему запускать игры (хотя родители некоторых покупателей с радостью бы за неё заплатили). У него есть производительность, которой может оказаться достаточно или недостаточно для комфортной игры. Разделение же на игровые и не игровые модели - не более чем искусственный маркетинг. Причём разделение весьма странно и зачастую не соответствует реальным возможностям ЦПУ.

Рекомендация №2: Какие бы цели вы ни ставили перед будущим ПК - будет ли он игровой системой, рабочей станцией или основным элементом домашней мультимедийной системы - руководствуйтесь самым простым параметром: тем, насколько производительности процессора достаточно для этих задач.

Раскрывашки

Кризисный 2016 год, в который упали доходы населения, а следовательно, и продажи всего и вся, включая центральные процессоры, "подарил" нам очередной миф, который теперь надолго засядет в интернетах. А уж в сознании рядовых покупателей - и того дольше.

Суть явления проста: "старые процессоры с новыми видеокартами работать не могут, бегите все покупать новые!". Особенно доставляют здесь рекомендации заменить вполне годные и актуальные процессоры Core i5 старых поколений на процессоры Core i3 новых поколений, которые по всем параметрам хуже. Ну, и, разумеется, советы потратить 40 тысяч на апгрейд платформы ради игр с видеокартой за 20 тысяч.

Рекомендация №3: Собственно, и . Задача любой раскрывашки - не помочь вам выбрать подходящий процессор, а "втюхать" девайс поновее и подороже, желательно в комплекте с материнской платой и памятью. Увидите раскрывашку - отойдите в сторонку и не слушайте. Иначе себе дороже выйдет.

Что ИНОГДА может оказаться важным

OEM и BOX-комплектация, она же "система охлаждения в комплекте"

Центральные процессоры могут поставляться в двух вариантах: "боксовой" и OEM-комплектации . Разница предельно проста: "бокс" - это, собственно, коробка, в которой, помимо самого процессора, находятся гарантийный талон и штатная система охлаждения (хотя в редких случаях вроде процессоров FX 9000-ой серии она может отсутствовать). OEM - это просто процессор, абсолютно без всего. Ни коробки, ни кулера, ни гарантийного талона.

Вызвано это тем, что OEM-комплектация по замыслу производителя процессора предназначается для фирм, собирающих и продающих готовые ПК. Процессоры в данном случае приобретаются большими партиями и поставляются в паллетах, вмещающих по 20 с лишним штук. Опять же, по логике производителя, из этих паллетов они должны попадать сразу в компьютеры.

Но в нашей стране процессор в OEM-комплектации можно свободно купить в рознице (см. гневные отзывы на тему "Вынесли процессор в пакетике" ). Такая комплектация дешевле боксовой, и порой - очень существенно.

Рекомендация №4: Боксовая комплектация - это всегда компромисс. Штатный кулер - не самый эффективный, не самый тихий и уж совершенно точно - не самый выгодный по цене. Кого-то может подкупить более длительный срок гарантии у "бокса" против OEM, однако процессор - устройство крайне живучее, и сломать его ой как непросто (разве что целенаправленно и механически). Если он прожил у вас первый день - с 95% вероятностью проживёт и следующие 10 лет. Альтернативные кулеры, опять же, могут оказаться и дешевле, и эффективнее штатного.

С другой стороны, всё упирается в цену. Если стоимость "бокса" лишь немногим выше OEM - берите бокс, хуже от этого не будет.

Свободный множитель и частота процессора

Далеко не каждому пользователю даже самого обычного игрового ПК интересен разгон, не говоря уже о платформах, на которых оный разгон вообще не нужен или противопоказан. Тем не менее, в отдельных случаях этот параметр может оказаться полезным.

Частота современных процессоров складывается из двух параметров: базовой частоты, задаваемой системной шиной, и множителя, который варьируется от модели к модели. Соответственно, изменяя один из двух параметров или оба сразу, мы можем изменять итоговую тактовую частоту процессора и его производительность. Тем не менее, далеко не все современные платформы позволяют разгонять процессор по шине (а еще меньше платформ позволяют делать это официально). Так что, если вы заранее планируете разгон - выбирайте модели ЦПУ с разблокированным множителем , этим вы сильно облегчите себе задачу.

Что же касается тактовой частоты процессора (как базовой , так и в турбо-режиме ) - это весьма специфический параметр. При прочих равных условиях - да, производительность процессоров определяется частотой. Например, если мы сравниваем два процессора из линейки Core i5 , относящихся к одному и тому же поколению и основанных на одном и том же ядре, быстрее будет тот, у которого выше частота.

Но если сравнивать Core i5 с Core i3 того же поколения или с Core i5 предшествующего поколения - частота вовсе не будет определяющим фактором! В первом случае важно будет количество исполнительных блоков, во втором - архитектурные различия и поддержка отдельных технологий и инструкций.

Рекомендация №5: Свободный множитель - параметр полезный, но далеко не для всех. Нужен он вам или нет - зависит от ситуации, и однозначных рекомендаций тут дать нельзя. Что же касается частоты - пользуйтесь этим параметром с осторожностью. Он важен только в том случае, если все остальные параметры одинаковы.

Интегрированное графическое ядро

Большинство современных процессоров за редкими исключениями оснащается встроенной графикой . У некоторых покупателей это вызывает недовольство - мол, зачем это я переплачиваю за то, чем не буду пользоваться? Однако в реальности встроенное графическое ядро не отнимает, а ЭКОНОМИТ ваши деньги.

Как так? Всё просто. Купили вы компьютер с мощным процессором, оверклокерской материнской платой и большим объемом памяти, а покупку игровой видеокарты отложили на потом. Всего лет 8-10 назад в такой ситуации вам пришлось бы искать на барахолках "затычку" для слота - устаревшую или слабую видеокарту, на которой можно было пересидеть, пока не будет приобретен более мощный современный девайс. Просто потому, что иначе компьютер бы не работал - не умели тогда процессоры выводить видео, а топовые материнские платы и встроенное видео были вещами несовместимыми.

Сегодня же - вы просто подключаете монитор к выходам на материнской плате и используете ПК, не тратя лишнее время и деньги. Более того - производительность современной встроенной графики такова, что нетребовательным пользователям и тем, кому компьютер нужен не для игр видеокарта и вовсе не нужна!

Особняком здесь стоят APU компании AMD . Их ключевое преимущество - именно мощная встроенная графика, что делает эти процессоры отличным вариантом для HTPC и мультимедийных систем, но в то же время их использование с дискретным видео теряет всякий смысл. Справедливости ради - топовые модели современных процессоров Intel оснащаются видеоядром не хуже, но стоят куда дороже APU, а производительность их процессорной части для HTPC крайне избыточна.

Кто же сегодня живёт без встроенной графики? Это топовые процессоры Intel для платформы LGA 2011-3 - им по статусу положено работать либо с мощнейшими игровыми видеокартами, либо с профессиональными ускорителями вычислений. Также лишены графики процессоры AMD под уходящую уже платформу AM3+ . И процессоры семейства Athlon II - те же самые APU, только с отключенной графической частью: экстремально дешёвые и столь же производительные за свой ценник.

Кроме того, без встроенной графики обходятся некоторые (но далеко не все) процессоры Intel Xeon , выполненные под мейнстримовые платформы LGA 115x. Об этих процессорах стоит сказать особо. Несмотря на "серверное" имя, они фактически являются аналогами десктопных Core i5/i7. Существенные различия - возможность установки в материнские платы, поддерживающие мультипроцессорные конфигурации и поддержка оперативной памяти с коррекцией ошибок (ECC).

Рекомендация №6: Бояться встроенной графики не стоит - это отличный бонус, который к тому же скоро станет стандартом для всех платформ за исключением LGA 2011-3 и возможно, её потомков. Встроенное ядро может оказаться очень полезным в отдельных случаях или вовсе избавить вас от необходимости покупать дискретную видеокарту. Но и гоняться за ним не стоит: у процессоров без встроенной графики тоже может оказаться немало достоинств.

Что вам ДЕЙСТВИТЕЛЬНО важно знать

Сокет

Сокет - это разъём, в который процессор устанавливается на материнской плате. Как и любой другой разъём, он имеет определённые физические размеры, конструкцию, количество контактов и так далее. Соответственно, за редкими исключениями, установить в один сокет можно только одно семейство процессоров. Например, процессор под сокет AM4 в материнскую плату с сокетом FM2+ или LGA 1151 установить невозможно чисто физически (вернее, один раз возможно, но после этого вам потребуются и новый процессор, и новая материнская плата).

Соответственно, выбор сокета определяет то, какие процессоры вам будут доступны на момент покупки, и какие вы сможете установить в будущем (и сможете ли вообще). От него зависит производительность системы, возможности и цена будущего апгрейда, а нередко - и количество периферийных устройств, которые можно установить в ПК.

Рекомендация №7 : Определитесь с тем, что вы хотите получить от ПК. Да, некоторые современные платформы абсолютно универсальны (а некоторые будущие платформы - обещают быть такими) и гибко настраиваются под любые задачи при наличии должного количества денег, но это вовсе не значит, что у них нет аналогов. Некоторые ваши задачи могут быть решены гораздо меньшими тратами, а некоторые - гораздо эффективнее при тех же тратах.

Если вы выбираете процессор под уже имеющуюся материнскую плату - не поленитесь потратить несколько минут на то, чтобы зайти на официальный сайт производителя и посмотреть список совместимых с ней моделей ЦПУ. Это бесплатно, совершенно не сложно, и не требует никаких специальных знаний, но в ряде случаев поможет вам сэкономить время и деньги.

Бывает так, что процессор совпадает по сокету, но при этом вовсе не поддерживается материнской платой, или для запуска требует обновления микрокода биос. Второе можно сделать заранее перед покупкой нового ЦПУ, а первое лучше узнать сразу, чем потом возвращать в магазин исправный товар, в несовместимости которого с вашим железом не виноваты ни вы, ни сотрудники магазина.

Также бывают случаи, когда процессор номинально поддерживается, но на деле не может работать в конкретной материнской плате - например, когда подсистема питания материнской платы слишком слабая, а процессор наоборот, слишком прожорлив и требователен к питанию. Об этом тоже лучше узнать заранее, чем потом бороться с последствиями.

Если же вы выбираете процессор под абсолютно новую систему, обращать внимание следует на актуальные сокеты:

AM1 - платформа AMD, предназначенная для неттопов, встраиваемых систем и мультимедийных ПК начального уровня. Как и все APU, отличается наличием сравнительно мощной встроенной графики, что и является основным преимуществом.

AM4 - универсальная платформа AMD для мейнстрим-сегмента. Объединяет десктопные APU и мощные ЦПУ семейства Ryzen, благодаря чему позволяет собирать ПК буквально под любой бюджет и потребности пользователя.

TR4 - флагманская платформа AMD, предназначенная под процессоры Threadripper. Это продукт для профессионалов и энтузиастов: 16 физических ядер, 32 потока вычислений, четырёхканальный контроллер памяти и прочие впечатляющие цифры, дающие серьёзный прирост производительности в рабочих задачах, но практически не востребованные в домашнем сегменте.

LGA 1151_v2 - сокет, который ни в коем случае нельзя путать с обычным LGA 1151 (!!!). Являет собой актуальную генерацию мейнстримовой платформы Intel, и наконец-то привносит в потребительский сегмент процессоры с шестью физическими ядрами - этим и ценен. Однако обязательно следует помнить, что процессоры Coffee Lake нельзя установить в платы с чипсетами серий 200 и 100, а старые процессоры Skylake и Kaby Lake - в платы с чипсетами серии 300.

LGA 2066 - актуальная генерация платформы Intel, предназначенной для профессионалов. Также может быть интересна в качестве платформы для постепенного апгрейда. Младшие процессоры Core i3 и Core i5 практически ничем не отличаются от аналогов под LGA 1151 первой версии и стоят относительно доступно, но впоследствии их можно заменить на Core i7 и Core i9.

Количество ядер

Этот параметр требует множества оговорок, и его следует применять с осторожностью, однако именно он позволяет более-менее логично выстроить и дифференцировать центральные процессоры.

Модели с двумя вычислительными ядрами , а также с двумя физическими ядрами и четырьмя виртуальными потоками вне зависимости от тактовой частоты, степени динамического разгона, архитектурных преимуществ и фанатских мантр сегодня прочно обосновались в сегменте офисных ПК, причём даже там - не на самых ответственных местах. Всерьёз говорить об использовании таких ЦПУ в игровых машинах, а уж тем более - в рабочих станциях сегодня не приходится.

Процессоры с четырьмя вычислительными ядрами выглядят немного актуальнее, и могут удовлетворить запросы как офисных работников, так и не самых требовательных домашних пользователей. На них вполне можно собрать бюджетный игровой ПК, хотя в современных тайтлах производительность будет ограничена, а одновременное выполнение нескольких операций - к примеру, запись игрового видео, - будет невозможно или приведёт к заметному падению фпс.

Оптимальный вариант для дома - процессоры с шестью ядрами . Они способны обеспечивать высокую производительность в играх, не падают в обморок при выполнении нескольких ресурсоёмких задач одновременно, позволяют использовать ПК в качестве домашней рабочей станции, и при всём этом - сохраняют вполне доступную стоимость.

Процессоры с восемью ядрами - выбор тех, кто занят более серьёзными задачами, нежели игры. Хотя и с развлечениями они справятся без проблем, заметнее всего их преимущества - в рабочих приложениях. Если вы занимаетесь обработкой и монтажом видео, рисуете сложные макеты для полиграфии, проектируете дома или другие сложные конструкции, то выбирать стоит именно эти ЦПУ. Излишка производительности вы не заметите, а вот быстрая обработка и отсутствие зависаний в самый ответственный момент - определённо вас порадуют.

Процессоры с 10 и 16 ядрами - это уже серверный сегмент и весьма специфические рабочие станции, от предыдущего варианта отличающиеся примерно как работа дизайнера спецэффектов для большого кино от работы монтажера роликов на youtube (собственно, примерно там и используются). Однозначно рекомендовать или наоборот, отговаривать от их покупки сложно. Если вам реально требуется такая производительность - вы уже знаете, как и где будете её применять.

Рекомендация №8: Количество ядер - не самый чёткий параметр, и не всегда он позволяет отнести к одной группе процессоры с близкими характеристиками. Тем не менее, при выборе процессора стоит ориентироваться на этот параметр.

Производительность

Итоговый и самый важный параметр, которого, увы, нельзя найти ни в одном каталоге магазина. Тем не менее, в итоге именно он определяет, подойдет ли вам тот или иной процессор, и насколько эксплуатация ПК на его основе будет соответствовать вашим первоначальным ожиданиям.

Прежде, чем отправляться в магазин за процессором, который вам вроде бы подходит, не поленитесь изучить его детальные тесты. Причем "детальные" - это не видосики на ютубе, показывающие вам то, что вы должны увидеть по замыслу их автора. Детальные тесты - это масштабное сравнение процессора в синтетических бенчмарках, профессиональном софте и играх, проводимое по чёткой методике с участием всех или большинства конкурирующих решений.

Как и в случае с видеокартами, чтение и анализ подобных материалов поможет вам определить, стоит ли тот или иной процессор своих денег, и на что, при возможности, его можно заменить.

Рекомендация №9: Потратив пару вечеров на чтение и сравнение информации из разных источников (важно, чтобы они были авторитетными, и весьма желательно - зарубежными), вы сделаете аргументированный выбор и избавите себя от множества проблем в будущем. Поверьте, оно того более чем стоит.

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Процессоры AMD Sempron и Athlon под сокет AM1 подойдут для сборки бюджетных мультимедийных ПК, встраиваемых систем и тому подобных задач. К примеру, если вы хотите установить в машину полноценный ПК с десктопной операционной системой или собрать небольшой неттоп, который будет скрытно жить в недрах дачного дома или гаража - стоит обратить внимание на эту платформу.

Для офисных ПК подойдут двухъядерные процессоры Intel Celeron , Pentium и Core i3 . Их преимуществом в данном случае выступит наличие встроенного графического ядра. Производительность последнего достаточна для вывода необходимой информации и ускорения работы браузеров, но совершенно недостаточна для игр, которых на рабочем месте всё равно быть не должно.

Для домашнего мультимедийного ПК лучшим выбором окажутся APU от AMD, предназначенные под актуальный сокет AM4. Представители линеек A8, A10 и А12 объединяют под одной крышкой четырёхъядерный процессор и весьма неплохую графику, которая может уверенно соперничать с бюджетными видеокартами. ПК на этой платформе можно сделать весьма компактным, но его производительности хватит для воспроизведения любого контента, а также целого ряда рабочих задач и немалого перечня игр.

Для бюджетного игрового ПК подойдут четырёхъядерные процессоры AMD Ryzen 3 и четырёхъядерные Core i3 под сокет LGA 1151_v2 (не путать с двухъядерными Core i3 под сокет LGA 1151 !!!). Производительности этих процессоров достаточно для любых домашних задач и большинства игр, однако грузить их серьёзной работой или пытаться выполнять несколько ресурсоёмких задач одновременно всё же не стоит.

Для бюджетной рабочей станции компромиссным вариантом могут стать четырёхъядерные процессоры AMD Ryzen 5 . Помимо физических ядер, они предлагают и виртуальные потоки вычислений, что в итоге позволяет выполнять операции в восемь потоков. Разумеется, это не так эффективно, как физические ядра, но вероятность увидеть 100% загрузку процессора и падение фпс ниже играбельного при записи или прямой трансляции геймплея здесь гораздо ниже, чем у предыдущих двух вариантов. Да и последующий монтаж оного видео пройдёт быстрее.

Оптимальный выбор для домашнего игрового ПК - шестиядерные процессоры AMD Ryzen 5 и Intel Core i5 под сокет LGA 1151_v2 (не путать с их четырёхъядерными предшественниками!!!). Стоимость этих ЦПУ вполне гуманна, их даже можно назвать относительно доступными, в отличие от топовых линеек Ryzen 7 и Core i7. А вот производительности - вполне хватает, чтобы играть в любые интересные пользователю игры и работать на дому. Причем даже одновременно, если будет такое желание.

Для топовых игровых ПК или рабочих станций без претензий на избранность и элитарность подойдут процессоры AMD Ryzen 7 и Intel Core i7 , имеющие, соответственно, 8 ядер/16 потоков и 6 ядер/12 потоков. Относясь к мейнстримовым платформам, эти процессоры всё ещё относительно доступны и не требуют дорогостоящих материнских плат, блоков питания и кулеров. Однако их производительности достаточно практически для всех задач, которые может поставить перед ПК рядовой пользователь.

Если же её всё-таки будет недостаточно - для высокопроизводительных рабочих станций предназначены процессоры AMD Ryzen Threadripper , предназначенные для установки в сокет TR4, и топовые модели процессоров Intel под сокет LGA 2066 - Core i7 и Core i9 , имеющие по 8, 10, 12 и более физических ядер. Помимо этого, процессоры предлагают четырёхканальный контроллер памяти, что важно для ряда профессиональных задач, и до 44 линий PCI-express, позволяющих подключать много периферии, не теряя в скорости обмена данными. Рекомендовать эти ЦПУ для домашнего использования не получается и в силу их цены, и благодаря "заточенности" под многопоток и профессиональные задачи. А вот в работе процессоры под топовые платформы могут буквально в разы опережать своих десктопных собратьев.

М икропроцессор для персонального компьютера а, так же и для других устройств, будь то телефоны, планшеты, ноутбуки или другие интересные гаджеты, является основным центральным устройством, которое выполняет практически все вычисления и отвечает за обработку данных. Можно даже сказать так — центральный процессор это “мозг” любого современного компьютера или высокотехнологичного устройства. Так же он является одним из самых дорогостоящих элементов в составе современных компьютеров.

1. История появления процессора

Первые компьютерные процессоры, основу которых составляло механическое реле, появились в пятидесятых годах прошлого века. Спустя какое-то время появились модели с электронными лампами, которые в итоге были заменены на транзисторы. Сами же компьютеры представляли собой довольно габаритные и дорогостоящие устройства.

Последующее развитие процессоров свелось к тому, что было принято решение входящие в них компоненты, представить в одной микросхеме. Позволило осуществить данную задумку появление интегральных полупроводниковых схем.

В 1969 г. компания Busicom заказала двенадцать микросхем у Intel , которые они планировали использовать в собственной разработке – в настольном калькуляторе. Уже в то время разработчиков Intel посещала идея заменить несколько микросхем одной. Идею одобрило руководство корпорации, поскольку подобная технология позволяла существенно сократить расходы на производстве микросхем, при этом у специалистов появилась возможность сделать процессор универсальным для использования его в других вычислительных устройствах.

Некоторые системы позволяют увеличить уже имеющуюся рабочую частоту процессора, данная процедура называется «разгоном» . Установка большей частоты процессора позволяет увеличить и его показатели быстродействия.

7. Сравнение фирм-производителей Intel и AMD

Американская компания под названием Intel была основана в 1968 году, тогда как ее основной конкурент – компания AMD – появилась спустя год.

То, что AMD явила себя свету на год позже, нежели Intel, в существенной мере отразилось на их соперничестве. Первые процессоры от компании AMD представляли собой копии процессоров, выпущенных компанией Intel, однако этот факт не помешал AMD разработать первый 16-ядерный процессор . При этом в 2005 обычному пользователю был предложен первый 2-ядерный процессор , носящий название AMD Athlon 64 X2 .

Двухъядерные процессоры Core 2 Duo, разработанные компанией Intel, на год позже появились на соответствующем рынке, при этом стоимость процессоров AMD и сегодня намного дешевле процессоров от Intel.

Какому процессору все же стоит отдать предпочтение? Если пользователю необходимо использование компьютера для работы со сложным профессиональным программным обеспечением, то в этом случае лучше приобрести ПК с процессором от Intel.

Процессоры AMD – отличный вариант для игровых ПК и в ситуациях, не требующих высокой производительности аппаратной начинки.

8. Кэш-память процессора

Кэш – не что иное, как память процессора, задачи которой схожи с задачами, возлагаемыми на оперативную память. Процессор использует кэш для хранения в нем данных. В данной разновидности памяти буферизируется наиболее часто используемая информация, за счет чего временные затраты на последующее обращение к ней в существенной мере сокращаются.

Оперативная память реализуемых сегодня компьютеров, составляет от 1 Гб, при этом кэш процессоров не превышает 8 Мб. Как видно из приведенных данных, разница в этих разновидностях памяти довольно существенная. Несмотря на это, даже указанного объема достаточно для обеспечения нормального быстродействия всей системы. Немалый интерес у пользователей сегодня вызывают процессоры с двухуровневой кэш-памятью: L1 и L2. Память первого уровня меньше памяти второго уровня и необходима она для хранения инструкций. При этом второй уровень за счет того, что он больше, используется для непосредственного хранения данных. У многих процессоров на данный момент кэш второго уровня общий.

9. Функции и технологии процессоров: MMX, SSE, 3DNow!, Hyper Threading

Современные процессоры снабжены характерными дополнительными функциями и технологиями, расширяющими их возможности:

3DNow!, ММХ, SSE, SSE2, SSE3 – технологии, оптимизирующие работу с объемными данными и мультимедийными файлами;

В процессорах AMD с целью защиты от ряда вирусов предусмотрена технология NX-bit (No Execute), при этом в процессорах Intel имеется аналогичная технология XD (Execute Disable Bit);

Cool’n’Quiet (в AMD), ТМ1/ТМ2, С1Е, EIST (в Intel) снижается потребление электрической энергии;

В технологии AMD64 или ЕМТ64 (для процессоров Intel) нуждаются 64-битные инструкции;

Одновременное выполнение нескольких потоков команд в некоторых процессорах Intel подразумевает наличие технологии НТ (Hyper-Threading Technology).

10. Многоядерность процессоров

Центр современных центральных микропроцессоров снабжен ядрами. Ядро представляет собой кристалл кремния, площадь которого составляет около одного квадратного сантиметра. Несмотря на небольшие размеры, микроскопические логические элементы позволили реализовать на его поверхности принципиальную схему процессора, так называемую архитектуру (chip architecture).

Многоядерность процессора заключается в наличии в центральном микропроцессоре двух и более вычислительных ядер на поверхности одного процессорного кристалла, которые также могут быть заключены в одном корпусе.

Перечень преимуществ многоядерного процессора:

Появляется возможность распределить работу приложений по нескольким ядрам;

Процессы, нуждающиеся в интенсивных вычислениях, работают существенно быстрее;

Увеличивается скорость отклика приложений;

Снижение потребления электрической энергии;

Более продуктивное использование ресурсоемких мультимедийных программ;

Более комфортная работа пользователей ПК.

11. Производство процессоров

Производство микропроцессоров включает минимум два важных этапа. На первом этапе производятся подложки, которым впоследствии придают проводящие свойства. На втором этапе произведенные подложки тестируются, после чего собирается и упаковывается процессор.

Сегодня такие ведущие производители процессоров, как AMD и Intel стараются наладить выпуск продукции, задействовав при этом максимально возможные сегменты рынка, максимально сократив возможный ассортимент кристаллов. Отличным тому подтверждением являются процессоры Intel Core 2 Duo. В линейку упомянутой продукции входят три процессора с разными кодовыми наименованиями: Merom, предназначенный для мобильных устройств, Conroe – для настольных версий, Woodcrest – для серверных версий. У всех трех процессоров одна технологическая основа, что дает возможность производителю принимать решение, будучи на последнем этапе производства. Так, например, если на рынке будут более востребованы мобильные процессоры, компания сфокусируется на выпуске модели Socket 479. Если возрастет потребность в настольных моделях, то компания Intel упакует кристаллы, необходимые для Socket 775. В случае роста спроса на серверные процессоры, все вышеуказанные действия будут применены для Socket 771.

12. Маркировка и кодовые названия процессоров

Разнообразная продукция, произведенная на заводах крупных предприятий, обозначается кодовыми наименованиями, что является довольно удобным решением, нежели использование длинных официальных обозначений при проведении служебных разговоров и переписки. Порой о внутрифирменных кодовых названиях узнают широкие слои пользователей, однако довольно редко они употребляются в повседневном обиходе.

Ситуация с кодовыми наименованиями процессоров обратно противоположная, поскольку в последнее время они стали употребляться в разговорах и в качестве маркировки процессоров входить в официальную документацию.

При этом запомнить необходимо лишь некоторые кодовые названия, к примеру, для успешной модернизации ПК, поскольку чаще всего помимо красивого звучания и рекламных амбиций, подобные наименования никакой полезной информации для потребителя не несут.

13. Гнезда (socket) для процессоров

Сокет процессора в переводе с английского языка означает «разъем» или «гнездо» . Если применить этот термин к компьютеру, то гнездом называется место установки центрального процессора. Каждая модель процессора снабжена своим вариантом разъема, связанно это с тем, что технологии изготовления процессоров совершенствовались, а потому модернизировалась их архитектура, количество транзисторов, гнезда и т.д.

Сокет центрального процессора имеет вид щелевого или гнездового разъёма, предназначенного для того, чтобы упростить процесс установки центрального процессора. Использование разъёмов значительно упрощает замену процессора для последующего ремонта или модернизации ПК.

14. Охлаждение процессора

Вентилятор или, как его еще называют кулер , — устройство, задача которого сводится к тому, чтобы обеспечивать охлаждение процессора. Существую разные модели кулеров, однако чаще всего они устанавливаются поверх самого процессора.

Кулеры бывают активными и пассивными. К категории пассивных кулеров относятся обычные радиаторы, довольно дешевые, потребляющие минимум электричества и при этом практически бесшумные. Активный же кулер представляет собой радиатор с прикрепленным к нему вентилятором.

Наибольшей популярностью сегодня пользуются активные воздушные кулеры, состоящие из металлического радиатора с установленным на нем вентилятором.

Будучи механическим устройством, трущиеся детали кулера нуждаются в своевременном смазывании машинным маслом, при этом категорически запрещается для этих целей использовать масла растительного происхождения.

О необходимости смазать устройство можно узнать характерному и постепенно увеличивающемуся шуму от кулера.

15. Неисправности и ошибки в процессорах

В случае неисправности процессора, ПК может начать самостоятельно выключаться и перезагружаться, операционная система «зависать», а жёсткий диск попросту не отображаться. При этом все вышеописанное сопровождается сильным нагреванием процессора. Нередко, неисправный процессор становится причиной постоянных ошибок в работе операционной системы и сопутствующего программного обеспечения.

Ни при каких условиях нельзя неисправный процессор проверять на рабочей материнской плате, поскольку подобные действия вполне могут спровоцировать вывод из строя материнской платы.

Чаще всего процессоры подвергаются поломке по причине перегрева и некорректной сборки компьютера, что может стать причиной случайного загиба контактов процессора, а вследствие и возникновения короткого замыкания. Решить проблему в этом случае может лишь замена процессора.

– это основной вычислительный компонент, от которого сильно зависит скорость работы всего компьютера. Поэтому, обычно, при подборе конфигурации компьютера, сначала выбирают процессор, а затем уже все остальное.

Для простых задач

Если компьютер будет использоваться для работы с документами и интернета, то вам подойдет недорогой процессор со встроенным видеоядром Pentium G5400/5500/5600 (2 ядра / 4 потока), которые лишь немного отличаются частотой.

Для монтажа видео

Для монтажа видео лучше брать современный многопоточный процессор AMD Ryzen 5/7 (6-8 ядер / 12-16 потоков), который в тандеме с хорошей видеокартой также неплохо справится с играми.
Процессор AMD Ryzen 5 2600

Для среднего игрового компьютера

Для чисто игрового компьютера среднего класса лучше взять Core i3-8100/8300, они имеют честные 4 ядра и хорошо показывают себя в играх с видеокартами среднего класса (GTX 1050/1060/1070).
Процессор Intel Core i3 8100

Для мощного игрового компьютера

Для мощного игрового компьютера лучше взять 6-ядерник Core i5-8400/8500/8600, а для ПК с топовой видеокартой i7-8700 (6 ядер / 12 потоков). Эти процессоры показывает лучшие результаты в играх и способны полностью раскрыть мощные видеокарты (GTX 1080/2080).
Процессор Intel Core i5 8400

В любом случае, чем больше ядер и выше частота процессора, тем лучше. Ориентируйтесь на ваши финансовые возможности.

2. Как устроен процессор

Центральный процессор состоит из печатной платы с кристаллом кремния и различными электронными элементами. Кристалл накрыт специальной металлической крышкой, предотвращающей его повреждение и являющейся теплораспределителем.

С другой стороны платы находятся ножки (или контактные площадки), с помощью которых процессор соединяется с материнской платой.

3. Производители процессоров

Процессоры для компьютеров производят две крупных компании — Intel и AMD на нескольких в мире высокотехнологичных фабриках. Поэтому процессор, независимо от производителя, является самым надежным компонентом компьютера.

Intel является лидером в разработке технологий, использующихся в современных процессорах. AMD частично перенимает их опыт, добавляя что-то свое и проводит более демократичную ценовую политику.

4. Чем отличаются процессоры Intel и AMD

Процессоры Intel и AMD отличаются преимущественно архитектурой (электронной схемотехникой). Некоторые лучше справляются с одними задачами, некоторые с другими.

Процессоры Intel Core в целом имеют более высокую производительность на ядро, благодаря чему опережают процессоры AMD Ryzen в большинстве современных игр и больше подходят для сборки мощных игровых компьютеров.

Процессоры AMD Ryzen в свою очередь выигрывают в многопоточных задачах, таких как монтаж видео, в принципе не сильно уступают Intel Core в играх и прекрасно подойдут для универсального компьютера, используемого как для профессиональных задач, так и для игр.

Справедливости ради стоит заметить, что старые недорогие процессоры AMD серии FX-8xxx, имеющие 8 физических ядер, неплохо справляются с монтажом видео и их можно использовать в качестве бюджетного варианта для этих целей. Но они хуже подходят для игр и устанавливаются на материнские платы с устаревшим сокетом AM3+, что сделает проблематичной замену комплектующих в будущем с целью улучшения или ремонта компьютера. Так что лучше приобрести более современный процессор AMD Ryzen и соответствующую материнскую плату на сокете AM4.

Если ваш бюджет ограничен, но в будущем вы хотите иметь мощный ПК, то можно для начала приобрести недорогую модель, а через 2-3 года поменять процессор на более мощный.

5. Сокет процессора

Socket – это разъем для соединения процессора с материнской платой. Процессорные сокеты маркируются либо по количеству ножек процессора, либо цифро-буквенным обозначением по усмотрению производителя.

Процессорные сокеты постоянно претерпевают изменения и из года в год появляются все новые модификации. Общая рекомендация приобретать процессор с наиболее современным сокетом. Это обеспечит возможность замены как процессора, так и материнской платы в ближайшие несколько лет.

Сокеты процессоров Intel

  • Окончательно устаревшие: 478, 775, 1155, 1156, 2011
  • Устаревающие: 1150, 2011-3
  • Современные: 1151, 1151-v2, 2066

Сокеты процессоров AMD

  • Устаревшие: AM1, АМ2, AM3, FM1, FM2
  • Устаревающие: AM3+, FM2+
  • Современные: AM4, TR4

У процессора и материнской платы сокеты должны быть одинаковыми, иначе процессор просто не установится. На сегодня наиболее актуальными являются процессоры со следующими сокетами.

Intel 1150 — они еще есть в продаже, но в ближайшие несколько лет выйдут из обихода и замена процессора или материнской платы станет проблематичнее. Имеют широкий модельный ряд — от самых недорогих, до довольно мощных.

Intel 1151 — современные процессоры, которые уже не на много дороже, но значительно перспективнее. Имеют широкий модельный ряд — от самых недорогих, до довольно мощных.

Intel 1151-v2 — вторая версия сокета 1151, отличается от предыдущего поддержкой самых современных процессоров 8-го поколения.

Intel 2011-3 — мощные 6/8/10-ядерные процессоры для профессиональных ПК.

Intel 2066 — топовые самые мощные и дорогие 12/16/18-ядерные процессоры для профессиональных ПК.

AMD FM2+ — процессоры с интегрированной графикой для офисных задач и самых простеньких игр. В модельном ряду есть как совсем бюджетные, так и процессоры среднего класса.

AMD AM3+ — устаревающие 4/6/8-ядерные процессоры (FX), старшие версии из которых можно использовать для монтажа видео.

AMD AM4 — современные многопоточные процессоры для профессиональных задач и игр.

AMD TR4 — топовые самые мощные и дорогие 8/12/16-ядерные процессоры для профессиональных ПК.

Рассматривать приобретение компьютера на более старых сокетах нецелесообразно. А вообще я бы рекомендовал ограничить выбор процессорами на сокетах 1151 и AM4, так как они наиболее современные и позволяют собрать достаточно мощный компьютер на любой бюджет.

6. Основные характеристики процессоров

Все процессоры, независимо от производителя, отличаются количеством ядер, потоков, частотой, объемом кэш-памяти, частотой поддерживаемой оперативной памяти, наличием встроенного видеоядра и некоторыми другими параметрами.

6.1. Количество ядер

Количество ядер оказывает наибольшее влияние на производительность процессора. Офисному или мультимедийному компьютеру необходим как минимум 2-ядерный процессор. Если компьютер предполагается использовать для современных игр, то ему нужен процессор минимум с 4 ядрами. Процессор с 6-8 ядрами подойдет для монтажа видео и тяжелых профессиональных приложений. Наиболее мощные процессоры могут иметь 10-18 ядер, но стоят они очень дорого и предназначены для сложных профессиональных задач.

6.2. Количество потоков

Технология гиперпоточности (Hyper-treading) позволяет каждому ядру процессора обрабатывать 2 потока данных, что значительно увеличивает производительность. Многопоточными процессорами являются Intel Core i7,i9, некоторые Core i3 и Pentium (G4560, G46xx), а также большинство AMD Ryzen.

Процессор с 2 ядрами и поддержкой Hyper-treading по производительности близок к 4-ядерному, а с 4 ядрами и Hyper-treading — к 8-ядерному. Например, Core i3-6100 (2 ядра / 4 потока) в два раза мощнее 2-ядерного Pentium без Hyper-treading, но все же несколько слабее честного 4-ядерника Core i5. Но процессоры Core i5 не поддерживают Hyper-treading, поэтому значительно уступают процессорам Core i7 (4 ядра / 8 потоков).

Процессоры Ryzen 5 и 7 имеют 4/6/8 ядер и соответственно 8/12/16 потоков, что делает их королями в таких задачах как монтаж видео. В новом семействе процессоров Ryzen Threadripper есть процессоры до 16 ядер и 32 потоков. Но есть младшие процессоры из серии Ryzen 3, которые не являются многопоточными.

Современные игры также научились использовать многопоточность, так что для мощного игрового ПК желательно брать Core i7 (на 8-12 потоков) или Ryzen (на 8-12 потоков). Также неплохим выбором по соотношению цена/производительность будут новые 6-ядерные процессоры Core-i5.

6.3. Частота процессора

Производительность процессора также сильно зависит от его частоты, на которой работают все ядра процессора.

Простому компьютеру для набора текста и доступа в интернет в принципе хватит процессора с частотой около 2 ГГц. Но есть много процессоров с частотой около 3 ГГц, которые стоят примерно столько же, поэтому экономить здесь нецелесообразно.

Мультимедийному или игровому компьютеру среднего класса подойдет процессор с частотой около 3.5 ГГц.

Для мощного игрового или профессионального компьютера требуется процессор с частотой ближе к 4 ГГц.

В любом случае чем выше частота процессора, тем лучше, а там смотрите по финансовым возможностям.

6.4. Turbo Boost и Turbo Core

У современных процессоров существует понятие базовой частоты, которая указывается в характеристиках просто как частота процессора. Об этой частоте мы и говорили выше.

У процессоров Intel Core i5,i7,i9 есть также понятие максимальной частоты в Turbo Boost. Это технология, которая автоматически увеличивает частоту ядер процессора при высокой нагрузке для увеличения производительности. Чем меньше ядер использует программа или игра, тем больше увеличивается их частота.

Например, у процессора Core i5-2500 базовая частота 3.3 ГГц, а максимальная частота в Turbo Boost 3.7 ГГц. Под нагрузкой, в зависимости от количества используемых ядер, частота будет увеличиваться до следующих значений:

  • 4 активных ядра — 3.4 ГГц
  • 3 активных ядра — 3.5 ГГц
  • 2 активных ядра — 3.6 ГГц
  • 1 активное ядро — 3.7 ГГц

У процессоров AMD серий A, FX и Ryzen есть аналогичная технология автоматического разгона процессора, называемая Turbo Core. Например, у процессора FX-8150 базовая частота 3.6 ГГц, а максимальная частота в Turbo Core 4.2 ГГц.

Для того, чтобы технологии Turbo Boost и Turbo Core работали, нужно чтобы процессору хватало питания и он не перегревался. Иначе процессор не будет поднимать частоту ядер. Значит блок питания, материнская плата и кулер должны быть достаточно мощными. Также работе этих технологий не должны препятствовать настройки BIOS материнской платы и настройки электропитания в Windows.

В современных программах и играх используются все ядра процессора и прибавка производительности от технологий Turbo Boost и Turbo Core будет небольшая. Поэтому при выборе процессора лучше ориентироваться на базовую частоту.

6.5. Кэш-память

Кэш-памятью называется внутренняя память процессора, необходимая ему для более быстрого выполнения вычислений. Объем кэш-памяти так же оказывает влияние на производительность процессора, но в гораздо меньшей мере чем количество ядер и частота процессора. В разных программах это влияние может варьироваться в диапазоне 5-15%. Но процессоры с большим объемом кэш-памяти стоят значительно дороже (в 1,5-2 раза). Поэтому такое приобретение не всегда экономически целесообразно.

Кэш-память бывает 4-х уровней:

Кэш 1-го уровня имеет маленький размер и при выборе процессора на него обычно не обращают внимания.

Кэш 2-го уровня является самым главным. В слабых процессорах типичным является наличие 256 килобайт (Кб) кэш-памяти 2-го уровня на ядро. Процессоры, предназначенные для компьютеров средней производительности, имеют 512 Кб кэш-памяти 2-го уровня на ядро. Процессоры для мощных профессиональных и игровых компьютеров должны оснащаться не менее 1 мегабайта (Мб) кэш-памяти 2-го уровня на каждое ядро.

Кэш 3-го уровня имеют не все процессоры. Самые слабые процессоры для офисных задач могут иметь до 2 Мб кэша 3-го уровня, либо вообще его не имеют. Процессоры для современных домашних мультимедийных компьютеров должны иметь 3-4 Мб кэш-памяти 3-го уровня. Мощные процессоры для профессиональных и игровых компьютеров должны иметь 6-8 Мб кэш-памяти 3-го уровня.

Кэш 4-го уровня имеют только некоторые процессоры и если он есть, то это хорошо, но в принципе не обязательно.

Если процессор имеет кэш 3 или 4 уровня, то на размер кэша 2-го уровня можно не обращать внимания.

6.6. Тип и частота поддерживаемой оперативной памяти

Разные процессоры могут поддерживать разные типы и частоту оперативной памяти. Это нужно учитывать в дальнейшем при выборе оперативки.

Устаревающие процессоры могут поддерживать оперативную память DDR3 с максимальной частотой 1333, 1600 или 1866 МГц.

Современные процессоры поддерживают память DDR4 с максимальной частотой 2133, 2400, 2666 МГц или более и часто для совместимости память DDR3L, которая отличается от обычной DDR3 пониженным напряжением с 1.5 до 1.35 В. Такие процессоры смогут работать и с обычной памятью DDR3, если у вас она уже есть, но производители процессоров это не рекомендуют из-за повышенной деградации контроллеров памяти, рассчитанных на DDR4 с еще более низким напряжением 1.2 В. Кроме того, под старую память нужна еще и старая материнка со слотами DDR3. Так что лучший вариант это продать старую память DDR3 и переходить на новую DDR4.

На сегодня самой оптимальной по соотношению цена/производительность является память DDR4 с частотой 2400 МГц, которую поддерживают все современные процессоры. Иногда не на много дороже можно купить память с частотой 2666 МГц. Ну а память на 3000 МГц будет стоить уже значительно дороже. Кроме того, процессоры не всегда стабильно работают с высокочастотной памятью.

Также нужно учитывать какую максимальную частоту памяти поддерживает материнская плата. Но частота памяти оказывает сравнительно небольшое влияние на общую производительность и гнаться за этим особо не стоит.

Часто у пользователей, которые начинают разбираться в компьютерных комплектующих, возникает вопрос относительно наличия в продаже модулей памяти с гораздо более высокой частотой, чем официально поддерживает процессор (2666-3600 МГц). Для работы памяти на такой частоте нужно, чтобы материнская плата имела поддержку технологии XMP (Extreme Memory Profile). XMP автоматически повышает частоту шины, чтобы память работала на более высокой частоте.

6.7. Встроенное видеоядро

Процессор может иметь встроенное видеоядро, что позволяет сэкономить на покупке отдельной видеокарты для офисного или мультимедийного ПК (просмотр видео, простейшие игры). Но для игрового компьютера и монтажа видео нужна отдельная (дискретная) видеокарта.

Чем дороже процессор, тем мощнее встроенное видеоядро. Среди процессоров Intel cамое мощное встроенное видео у Core i7, затем i5, i3, Pentium G и Celeron G.

У процессоров AMD A-серии на сокете FM2+ встроенное видеоядро мощнее, чем у процессоров Intel. Самое мощное у A10, затем A8, A6 и A4.

У процессоров FX на сокете AM3+ нет встроенного видеоядра и на их основе раньше собирали недорогие игровые ПК с дискретной видеокартой среднего класса.

Также нет встроенного видеоядра у большинства процессоров AMD серий Athlon и Phenom, а те у которых оно есть на очень старом сокете AM1.

У процессоров Ryzen с индексом G есть встроенное видеоядро Vega, которое в два раза мощнее, чем видеоядро процессоров прошлого поколения из серий A8, A10.

Если вы не собираетесь покупать дискретную видеокарту, но все-таки хотите время от времени поиграть в нетребовательные игры, то лучше отдать предпочтение процессорам Ryzen G. Но не рассчитывайте, что встроенная графика потянет требовательные современные игры. Максимум на что она способна это онлайн игры и некоторые хорошо оптимизированные игры на низких или средних настройках графики в разрешении HD (1280×720), в некоторых случаях Full HD (1920×1080). Посмотрите тесты нужного вам процессора на Youtube и поймете подходит ли он вам.

7. Другие характеристики процессоров

Также процессоры характеризуются такими параметрами как техпроцесс изготовления, энергопотребление и тепловыделение.

7.1. Техпроцесс изготовления

Техпроцессом называется технология, по которой производятся процессоры. Чем современнее оборудование и технология производства, тем техпроцесс тоньше. От техпроцесса, по которому изготовлен процессор, сильно зависит его энергопотребление и тепловыделение. Чем техпроцесс тоньше, тем процессор будет экономичнее и холоднее.

Современные процессоры изготавливаются по технологическому процессу от 10 до 45 нанометров (нм). Чем меньше это значение, тем лучше. Но в первую очередь ориентируйтесь на энергопотребление и связанное с ним тепловыделение процессора, о чем пойдет речь дальше.

7.2. Энергопотребление процессора

Чем больше количество ядер и частота процессора, тем больше его энергопотребление. Так же энергопотребление сильно зависит от техпроцесса изготовления. Чем техпроцесс тоньше, тем энергопотребление ниже. Главное, что нужно учесть это то, что мощный процессор нельзя устанавливать на слабую материнскую плату и ему потребуется более мощный блок питания.

Современные процессоры потребляют от 25 до 220 Ватт. Этот параметр можно прочесть на их упаковке или на сайте производителя. В параметрах материнской платы так же указывается на какое энергопотребление процессора она рассчитана.

7.3. Тепловыделение процессора

Тепловыделение процессора принято считать равным его максимальному энергопотреблению. Оно так же измеряется в Ваттах и называется температурным пакетом «Thermal Design Power» (TDP). Современные процессоры обладают TDP в диапазоне 25-220 Ватт. Старайтесь выбирать процессор с более низким TDP. Оптимальный диапазон TDP 45-95 Вт.

8. Как узнать характеристики процессоров

Все основные характеристики процессора, такие как количество ядер, частота и объем кэш-памяти обычно указываются в прайсах продавцов.

Все параметры того или иного процессора можно уточнить на официальных сайтах производителей (Intel и AMD):

По номеру модели или серийному номеру очень легко найти все характеристики любого процессора на сайте:

Или просто введите номер модели в поисковой системе Google или Яндекс (например, «Ryzen 7 1800X»).

9. Модели процессоров

Модели процессоров меняются ежегодно, поэтому здесь я не буду их все приводить, а приведу только серии (линейки) процессоров, которые меняются реже и по которым вы легко сможете ориентироваться.

Я рекомендую приобретать процессоры более современных серий, так как они производительнее и поддерживают новые технологии. Номер модели, который идет после названия серии, тем выше, чем больше частота процессора.

9.1. Линейки процессоров Intel

Старые серии:

  • Celeron – для офисных задач (2 ядра)
  • Pentium – для мультимедийных и игровых ПК начального класса (2 ядра)

Современные серии:

  • Celeron G – для офисных задач (2 ядра)
  • Pentium G – для мультимедийных и игровых ПК начального класса (2 ядра)
  • Core i3 – для мультимедийных и игровых ПК начального класса (2-4 ядра)
  • Core i5 – для игровых ПК среднего класса (4-6 ядер)
  • Core i7 – для мощных игровых и профессиональных ПК (4-10 ядер)
  • Core i9 – для сверхмощных профессиональных ПК (12-18 ядер)

Все процессоры Core i7, i9, некоторые Core i3 и Pentium поддерживают технологию Hyper-threading, что значительно увеличивает производительность.

9.2. Линейки процессоров AMD

Старые серии:

  • Sempron – для офисных задач (2 ядра)
  • Athlon – для мультимедийных и игровых ПК начального класса (2 ядра)
  • Phenom – для мультимедийных и игровых ПК среднего класса (2-4 ядра)

Устаревающие серии:

  • A4, А6 – для офисных задач (2 ядра)
  • A8, A10 – для офисных задач и простых игр (4 ядра)
  • FX – для монтажа видео и не очень тяжелых игр (4-8 ядер)

Современные серии:

  • Ryzen 3 – для мультимедийных и игровых ПК начального класса (4 ядра)
  • Ryzen 5 – для монтажа видео и игровых ПК среднего класса (4-6 ядер)
  • Ryzen 7 – для мощных игровых и профессиональных ПК (4-8 ядер)
  • Ryzen Threadripper – для мощных профессиональных ПК (8-16 ядер)

Процессоры Ryzen 5, 7 и Threadripper являются многопоточными, что при большом количестве ядер делает их отличным выбором для монтажа видео. Кроме того есть модели с индексом «X» в конце маркировки, которые имеют более высокую частоту.

9.3. Перезапуск серий

Стоит так же отметить, что иногда производители делают перезапуск старых серий на новые сокеты. Например, у Intel сейчас это Celeron G и Pentium G со встроенной графикой, у AMD обновленные линейки процессоров Athlon II и Phenom II. Эти процессоры немного уступают своим более современным собратьям в производительности, но значительно выигрывают в цене.

9.4. Ядро и поколение процессоров

Вместе со сменой сокетов обычно меняется и поколение процессоров. Например, на сокете 1150 были процессоры 4-го поколения Core i7-4xxx, на сокете 2011-3 — 5-го поколения Core i7-5xxx. При переходе на сокет 1151 появились процессоры 6-го поколения Core i7-6xxx.

Также бывает, что поколение процессора меняется без смены сокета. Например, на сокете 1151 вышли процессоры 7-го поколения Core i7-7xxx.

Смена поколений вызвана усовершенствованием электронной архитектуры процессора, называемой также ядром. Например, процессоры Core i7-6xxx построены на ядре с кодовым названием Skylake, а пришедшие к ним на смену Core i7-7xxx на ядре Kaby Lake.

Ядра могут иметь различные отличия от довольно весомых, до чисто косметических. Например, Kaby Lake отличается от предыдущего Skylake обновленной встроенной графикой и блокировкой разгона по шине процессоров без индекса K.

Аналогичным образом происходит смена ядер и поколений процессоров AMD. Например, процессоры FX-9xxx пришли на смену процессорам FX-8xxx. Основное их отличие это значительно возросшая частота и как следствие тепловыделение. А вот сокет не поменялся, а остался старый AM3+.

У процессоров AMD FX было множество ядер, последние из которых Zambezi и Vishera, но на смену им пришли новые значительно более совершенные и производительные процессоры Ryzen (ядро Zen) на сокете AM4 и Ryzen (ядро Threadripper) на сокете TR4.

10. Разгон процессора

Процессоры Intel Core с индексом «K» в конце маркировки имеют более высокую базовую частоту и разблокированный множитель. Их легко разгонять (повышать частоту) для увеличения производительности, но потребуется более дорогая материнская плата на чипсете Z-серии.

Все процессоры AMD FX и Ryzen можно разгонять путем изменения множителя, но разгонный потенциал у них поскромнее. Разгон процессоров Ryzen поддерживают материнские платы на чипсетах B350, X370.

В целом возможность разгона делает процессор более перспективным, так как в будущем при небольшой нехватке производительности его можно будет не менять, а просто разогнать.

11. Упаковка и кулер

Процессоры, в конце маркировки которых присутствует слово «BOX», упакованы в качественную коробку и могут продаваться в комплекте с кулером.

Но некоторые более дорогие боксовые процессоры могут не иметь кулера в комплекте.

Если в конце маркировки написано «Tray» или «ОЕМ», это значит, что процессор упакован в маленький пластиковый лоточек и кулера в комплекте нет.

Процессоры начального класса типа Pentium проще и дешевле приобрести в комплекте с кулером. А вот процессор среднего или высокого класса часто выгоднее купить без кулера и отдельно подобрать для него подходящий кулер. По стоимости выйдет примерно столько же, а по охлаждению и уровню шума будет значительно лучше.

12. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Процессоры» на сайте продавца.
  2. Выберете производителя (Intel или AMD).
  3. Выберите сокет (1151, AM4).
  4. Выберите линейку процессоров (Pentium, i3, i5, i7, Ryzen).
  5. Отсортируйте выборку по цене.
  6. Просматривайте процессоры, начиная с более дешевых.
  7. Покупайте процессор с максимально возможным количеством потоков и частотой, устраивающий вас по цене.

Таким образом, вы получите оптимальный по соотношению цена/производительность процессор, удовлетворяющий вашим требованиям за минимально возможную стоимость.

13. Ссылки

Процессор Intel Core i7 8700
Процессор Intel Core i5 8600K
Процессор Intel Pentium G4600

2. В ходе своего развития полупроводниковые структуры постоянно эволюционируют. Поэтому принципы построения процессоров, количество входящих в их состав элементов, то, как организовано их взаимодействие, постоянно изменяются. Таким образом, CPU с одинаковыми основными принципами строения, принято называть процессорами одной архитектуры. А сами такие принципы называют архитектурой процессора (или микроархитектурой).

Несмотря на это, внутри одной и той же архитектуры некоторые процессоры могут довольно сильно отличаться друг от друга - частотами системной шины, техпроцессом производства, структурой и размером внутренней памяти и т.д.

3. Ни в коем случае нельзя судить о микропроцессоре только по такому показателю, как частота тактового сигнала, которая измеряется мега или гигагерцами. Иногда «проц», у которого тактовая частота меньше, может оказаться более продуктивным. Очень важными являются такие показатели как: количество тактов, которые необходимы для выполнения команды, количество команд, которые он может выполнять одновременно и др.

Оценка возможностей процессора (характеристики)

В быту, при оценке возможностей процессора необходимо обращать внимание на следующие показатели (как правило они указаны на упаковке устройства или в прайс-листе или каталоге магазина):

  • количество ядер. Многоядерные CPU содержат на одном кристалле (в одном корпусе) 2, 4 и т.д. вычислительных ядра. Увеличение количества ядер – один из самых эффективных способов значительного повышения мощности процессоров. Но необходимо учитывать, что программы, которые не поддерживают многоядерность (как правило это старые программы), на многоядерных процессорах быстрее работать не будут, т.к. не умеют использовать более одного ядра;
  • размер кеша. Кеш - очень быстрая внутренняя память процессора, используемая им в качестве своеобразного буфера в случае необходимости компенсации «перебоев» во время работы с оперативной памятью. Логично, что, чем больше кеш, тем лучше.
  • количество потоков – пропускная способность системы. Количество потоков часто не совпадает с количеством ядер. Например, четырехядерный Intel Core i7 работает в 8 потоков и по своей производительности опережает многие шестиядерные процессоры;
  • тактовая частота – величина, которая показывает, сколько операций (тактов) в единицу времени может произвести процессор. Логично, что, чем больше частота, тем больше операций он может выполнить, т.е. тем производительнее получается.
  • скорость шины, при помощи которой CPU соединен с системным контроллером, находящимся на материнской плате.
  • техпроцесс – чем он мельче, тем меньше энергии процессор потребляет и, значит, меньше греется.

Процессор - это, без сомнения, главный компонент любого компьютера. Именно этот небольшой кусочек кремния, размером в несколько десятков миллиметров выполняет все те сложные задачи, которые вы ставите перед своим компьютером. Здесь выполняется операционная система, а также все программы. Но как все это работает? Этот вопрос мы попытаемся разобрать в нашей сегодняшней статье.

Процессор управляет данными на вашем компьютере и выполняют миллионы инструкций в секунду. И под словом процессор, я подразумеваю именно то, что оно на самом деле означает - небольшой чип из кремния, который фактически выполняет все операции на компьютере. Перед тем как перейти к рассмотрению как работает процессор, нужно сначала подробно рассмотреть что это такое и из чего он состоит.

Сначала давайте рассмотрим что такое процессор. CPU или central processing unit (центральное обрабатывающее устройство) - который представляет из себя микросхему с огромным количеством транзисторов, сделанную на кристалле кремния. Первый в мире процессор был разработан корпорацией Intel в 1971 году. Все началось с модели Intel 4004. Он умел выполнять только вычислительные операции и мог обрабатывать только 4 байта данных. Следующая модель вышла в 1974 году - Intel 8080 и мог обрабатывать уже 8 бит информации. Дальше были 80286, 80386, 80486. Именно от этих процессоров произошло название архитектуры.

Тактовая частота процессора 8088 была 5 МГц, а количество операций в секунду только 330 000 что намного меньше чем в современных процессоров. Современные устройства имеют частоту до 10 ГГц и несколько миллионов операций в секунду.

Мы не будем рассматривать транзисторы, переместимся на уровень выше. Каждый процессор состоит из таких компонентов:

  • Ядро - здесь выполняется вся обработка информации и математические операции, ядер может быть несколько;
  • Дешифратор команд - этот компонент относится к ядру, он преобразует программные команды в набор сигналов, которые будут выполнять транзисторы ядра;
  • Кэш - область сверхбыстрой памяти, небольшого объема, в которой хранятся данные, прочитанные из ОЗУ;
  • Регистры - это очень быстрые ячейки памяти, в которых хранятся сейчас обрабатываемые данные. Их есть всего несколько и они имеют ограниченный размер - 8, 16 или 32 бит именно от этот зависит разрядность процессора;
  • Сопроцессор - отдельное ядро, которое оптимизировано только для выполнения определенных операций, например, обработки видео или шифрования данных;
  • Адресная шина - для связи со всеми, подключенными к материнской плате устройствами, может иметь ширину 8, 16 или 32 бит;
  • Шина данных - для связи с оперативной памятью. С помощью нее процессор может записывать данные в память или читать их оттуда. Шина памяти может быть 8, 16 и 32 бит, это количество данных, которое можно передать за один раз;
  • Шина синхронизации - позволяет контролировать частоту процессора и такты работы;
  • Шина перезапуска - для обнуления состояния процессора;

Главным компонентом можно считать ядро или вычислительное-арифметическое устройство, а также регистры процессора. Все остальное помогает работать этим двум компонентам. Давайте рассмотрим какими бывают регистры и какое у них предназначение.

  • Регистры A, B, C - предназначены для хранения данных во время обработки, да, их только три, но этого вполне достаточно;
  • EIP - содержит адрес следующей инструкции программы в оперативной памяти;
  • ESP - адрес данных в оперативной памяти;
  • Z - содержит результат последней операции сравнения;

Конечно, это далеко не все регистры памяти, но эти самые главные и ими больше всего пользуется процессор во время выполнения программ. Ну а теперь, когда вы знаете из чего состоит процессор, можно рассмотреть как он работает.

Как работает процессор компьютера?

Вычислительное ядро процессора может выполнять только математические операции, операции сравнения и перемещение данных между ячейками и оперативной памятью, но этого вполне достаточно, чтобы вы могли играть игры, смотреть фильмы и просматривать веб-страницы и многое другое.

Фактически любая программа состоит из таких команд: переместить, сложить, умножить, делить, разница и перейти к инструкции если выполняется условие сравнения. Конечно, это далеко не все команды, есть другие, которые объединяют между собой уже перечисленные или упрощают их использование.

Все перемещения данных выполняются с помощью инструкции перемещения (mov), эта инструкция перемещает данные между ячейками регистров, между регистрами и оперативной памятью, между памятью и жестким диском. Для арифметических операций есть специальные инструкции. А инструкции перехода нужны для выполнения условий, например, проверить значение регистра A и если оно не равно нулю, то перейти к инструкции по нужному адресу. Также с помощью инструкций перехода можно создавать циклы.

Все это очень хорошо, но как же все эти компоненты взаимодействуют между собой? И как транзисторы понимают инструкции? Работой всего процессора управляет дешифратор инструкций. Он заставляет каждый компонент делать то, что ему положено. Давайте рассмотрим что происходит когда нужно выполнить программу.

На первом этапе дешифратор загружает адрес первой инструкции программы в памяти в регистр следующей инструкции EIP, для этого он активирует канал чтения и открывает транзистор-защелку чтобы пустить данные в регистр EIP.

Во втором тактовом цикле дешифратор инструкций преобразует команду в набор сигналов для транзисторов вычислительного ядра, которые выполняют ее и записывают результат в один из регистров, например, С.

На третьем цикле дешифратор увеличивает адрес следующей команды на единицу, так, чтобы он указывал на следующую инструкцию в памяти. Далее, дешифратор переходит к загрузке следующей команды и так до окончания программы.

Каждая инструкция уже закодирована последовательностью транзисторов, и преобразованная в сигналы, она вызывает физические изменения в процессоре, например, изменению положения защелки, которая позволяет записать данные в ячейку памяти и так далее. На выполнение разных команд нужно разное количество тактов, например, для одной команды может понадобиться 5 тактов, а для другой, более сложной до 20. Но все это еще зависит от количества транзисторов в самом процессоре.

Ну с этим все понятно, но это все будет работать только если выполняется одна программа, а если их несколько и все одновременно. Можно предположить, что у процессора есть несколько ядер, и тогда на каждом ядре выполняется отдельная программ. Но нет, на самом деле там таких ограничений нет.

В один определенный момент может выполняться только одна программа. Все процессорное время разделено между всеми запущенными программами, каждая программа выполняется несколько тактов, затем процессор передается другой программе, а все содержимое регистров сохраняется в оперативную память. Когда управление возвращается этой программе, то в регистры грузятся ранее сохраненные значения.

Выводы

Вот и все, в этой статье мы рассмотрели как работает процессор компьютера, что такое процессор и из чего он состоит. Возможно, это немного сложно, но мы рассмотрели все более просто. Надеюсь, теперь вам стало более ясно то, как работает это очень сложное устройство.

На завершение видео об истории создания процессоров: