Разложение в ряд фурье последовательности треугольного сигнала. Спектры периодических негармонических сигналов

Общие описания

Французский математик Фурье (Ж. Б. Ж. Фурье 1768-1830) провоз гласил достаточно смелую для своего времени гипотезу. Согласно этой гипотезе не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Однако, к сожалению, в то время такая идея не была воспринята всерьез. И это естественно. Сам Фурье не смог привести убедительных доказательств, а интуитивно поверить в гипотезу Фурье очень трудно. Особенно нелегко представить тот факт, что при сложении простых функций, подобных тригонометрическим, воспроизводятся функции, совершенно на них не похожие. Но если предположить, что гипотеза Фурье верна, то периодический сигнал любой формы можно разложить на синусоиды различных частот, или наоборот, посредством соответствующего сложения синусоид с разными частотами возможно синтезировать сигнал какой угодно формы. Следовательно, если эта теория верна, то ее роль в обработке сигналов может быть очень велика. В этой главе первым делом попы­таемся проиллюстрировать правильность гипотезы Фурье.

Рассмотрим функцию

f(t)= 2sin t – sin 2t

Простой тригонометрический ряд

Функция является суммой тригонометрических функций, иными словами, представлена в виде тригонометрического ряда из двух членов. Добавим одно слагаемое и создадим новый ряд из трех членов

Снова добавив несколько слагаемых, получим новый тригонометрический ряд из десяти членов:

Коэффициенты этого тригонометрического ряда обозначим как b k , где k - целые числа. Если внимательно посмотреть на последнее соотношение, то видно, что коэффициенты можно описать следующим выражением:

Тогда функцию f(t) можно представить следующим образом:

Коэффициенты b k - это амплитуды синусоид с угловой частотой к. Иначе говоря, они задают величину частотных составляющих.

Рассмотрев случай, когда верхний индекс к равен 10, т.е. М= 10. Увеличив значение М до 100, получим функцию f(t).

Эта функция, будучи тригонометрическим рядом, по форме приближается к пилообразному сигналу. И, похоже, гипотеза Фурье совершенно верна по отноше­нию к физическим сигналам, с которыми мы имеем дело. К тому же в этом примере форма сигнала не гладкая, а включает точки разрыва. И то, что функция воспроизводится даже в точках разрыва, выглядит многообещающим.

В физическом мире действительно много явлений, которые можно представить как суммы колебаний различных частот. Типичным примером этих явлений является свет. Он представляет собой сумму электромагнитных волн с длиной волны от 8000 до 4000 ангстрем (от красного цвета свечения до фиолетового). Вы, конечно, знаете, что если белый свет пропустить через призму, то появится спектр из семи чистых цветов. Это происходит потому, что коэффициент преломления стекла, из которого сделана призма, изменяется в зависимости от длины электромагнитной волны. Это как раз и является доказательством того, что белый свет - это сумма световых волн различной дли­ны. Итак, пропустив свет через призму и получив его спектр, мы можем проанализировать свойства света, исследуя цветовые комбинации. Подобно этому, посредством разложения принятого сигнала на различные частотные составляющие, мы можем узнать, как возник первоначальный сигнал, по какому пути он следовал или, наконец, какому внешнему влиянию он подвергался. Одним словом, мы можем получить информацию для выяснения происхождения сигнала.

Подобный метод анализа называется спектральным анализом или анализом Фурье.

Рассмотрим следующую систему ортонормированных функций:

Функцию f(t) можно разложить по этой системе функций на отрезке [-π, π] следующим образом:

Коэффициенты α k , β k , как было показано ранее, можно выразить через скалярные произведения:

В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты α 0 , α k , β k называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты - действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме.

Как уже было сказано ранее, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через α 0 , α k , β k получим:

Поскольку при k = 0 coskt = 1, то константа а 0 /2 выражает общий вид коэффициента а k при k = 0.

В соотношении (5.1) колебание самого большого периода, представленное суммой cos t и sin t, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) a 0 является постоянной величиной, выражающей среднее значение функции f{t) . Если функция f(t) представляет собой электрический сигнал, то а 0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

На Рис. 5.2 представлен сигнал и его разложение в ряд Фурье: на постоянную составляющую и гармоники различных частот. Во временной области, где переменной величиной является время, сигнал выражается функцией f(t), а в частотной области, где переменной величиной является частота, сигнал представляется коэффициен­тами Фурье (a k , b к).

Первая гармоника является периодической функцией с периодом 2 π.Прочие гармоники также имеют период, кратный 2 π. Исходя из этого, при формировании сигнала из составляющих ряда Фу­рье мы, естественно, получим периодическую функцию с периодом 2 π. А если это так, то разложение в ряд Фурье - это, собственно говоря, способ представления периодических функций.

Разложим в ряд Фурье сигнал часто встречающегося вида. Например, рассмотрим упомянутую ранее пилообразную кривую (Рис. 5.3). Сигнал такой формы на отрезке - π < t < π я выражается функцией f(t) = t , поэтому коэффициенты Фурье могут быть выражены следующим образом:

Пример 1.

Разложение в ряд Фурье сигнала пилообразной формы

f(t) = t,

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций, либо комплексных экспонент с частотами, образующими арифметическую прогрессию. Для того, чтобы такое разложение существовало, фрагмент сигнала длительностью в один период должен удовлетворять условиям Дирихле:

1. Не должно быть разрывов второго рода (с уходящими в бесконечность ветвями функции).

2. Число разрывов первого рода (скачков) должно быть конечным.

    Число экстремумов должно быть конечным.

Ряд Фурье может быть применён для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчёта коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Методы Фурье используются для анализа линейных схем или систем: для предсказания реакции (отклика) системы; для определения передаточной функции; для оценки результатов тестов.

Произвольный периодический сигнал выражается через бесконечное число гармоник с возрастающими частотами:

основные члены;

гармонические члены (при n > 1, n – целое число);

коэффициенты гармоник;

постоянный член или составляющая постоянного тока.

Период функции
должен равняться или кратной величине; кроме того функция
должна быть однозначной.Ряд Фурье можно рассматривать как «рецепт приготовления» любого периодического сигнала из синусоидальных составляющих. Чтобы данный ряд имел практическое значение, он должен сходиться, т.е. частичные суммы ряда должны иметь предел.

Процесс создания произвольного периодического сигнала из коэффициентов, описывающих смешивание гармоник, называется синтезом. Обратный процесс вычисления коэффициентов именуется анализом. Вычисление коэффициентов облегчается тем, что среднее от перекрёстных произведений синусоиды на косинусоиду (и наоборот) равно 0.

Введём в пространство Гильберта базис:
Для упрощения будем полагать, что он ортонормированный.

Тогда любую функцию
из пространства Гильберта можно представить через проекции вектора х на оси базиса обобщённым рядом Фурье:

Ряды Фурье особенно полезны при описании произвольных периодических сигналов с конечной энергией каждого периода. Кроме того, они могут использоваться для описания непериодических сигналов, имеющих конечную энергию за конечный интервал. На практике для описания таких сигналов используют интеграл Фурье.

Выводы

1. Для описания периодических сигналов широко применяется ряд Фурье. Для описания непериодических сигналов используют интеграл Фурье.

Заключение

1. Сообщения, сигналы и помехи как векторы (точки) в линейном пространстве можно описать через набор координат в заданном базисе.

2. Для ТЭС наибольший интерес при отображении сигналов представляет n-мерное пространство Евклида
, бесконечное пространство Гильберта
и дискретное пространство Хэмминга2 n . В этих пространствах вводится понятие скалярного произведения двух векторов (x , y ) .

3. Любую непрерывную функцию времени как элемент можно представить обобщенным рядом Фурье по заданному ортонормированному базису.

Литература

Основная:

    Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.

Дополнительная:

    Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

    Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

    Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. – М.:МТУСИ, ЦЕНТР ДО, 2002. – 65 с.

    Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. – М.:МТУСИ, 2008. – 53 с.

Вводные замечания

В данном разделе будет рассмотрено представление периодических сигналов при помощи ряда Фурье. Ряды Фурье являются основой теории спектрального анализа, потому что, как мы увидим позже, преобразование Фурье непериодического сигнала можно получить как предельный переход ряда Фурье при бесконечном периоде повторения. В результате свойства ряда Фурье также справедливы и для преобразования Фурье непериодических сигналов.

Мы рассмотрим выражения ряда Фурье в тригонометрической и комплексной форме, а также уделим внимание условиям Дирихле сходимости ряда Фурье. Кроме того, мы подробно остановимся на пояснении такого понятия как отрицательная частота спектра сигнала, которое часто вызывает сложность при знакомстве с теорией спектрального анализа.

Периодический сигнал. Тригонометрический ряд Фурье

Пусть имеется периодический сигнал непрерывного времени , который повторяется с периодом с, т.е. , где — произвольное целое число.

В качестве примера на рисунке 1 показана последовательность прямоугольных импульсов длительности c, повторяющиеся с периодом с.

Рисунок 1. Периодическая последовательность

Прямоугольных импульсов

Из курса математического анализа известно , что система тригонометрических функций


с кратными частотами , где рад/с, — целое число, образует ортонормированный базис для разложения периодических сигналов с периодом , удовлетворяющих условиям Дирихле .

Условия Дирихле сходимости ряда Фурье требуют, чтобы периодический сигнал был задан на сегменте , при этом удовлетворял следующим условиям:

Например, периодическая функция не удовлетворяет условиям Дирихле, потому что функция имеет разрывы второго рода и принимает бесконечные значения при , где — произвольное целое. Таким образом, функция не может быть представлена рядом Фурье. Также можно привести пример функции , которая является ограниченной, но также не удовлетворяет условиям Дирихле, поскольку имеет бесконечное число точек экстремума при приближении к нулю. График функции показан на рисунке 2.

Рисунок 2. График функции :

А — два периода повторения; б — в окрестности

На рисунке 2а показано два периода повторения функции , а на рисунке 2б — область в окрестности . Можно видеть, что при приближении к нулю, частота колебаний бесконечно возрастает, и такая функция не может быть представлена рядом Фурье, потому что она не является кусочно-монотонной.

Необходимо заметить, что на практике не бывает сигналов с бесконечными значениями тока или напряжения. Функции с бесконечным числом экстремумов типа также в прикладных задачах не встречаются. Все реальные периодические сигналы удовлетворяют условиям Дирихле и могут быть представлены бесконечным тригонометрическим рядом Фурье вида:


В выражении (2) коэффициент задает постоянную составляющую периодического сигнала .

Во всех точках, где сигнал непрерывен, ряд Фурье (2) сходится к значениям данного сигнала, а в точках разрыва первого рода — к среднему значению , где и — пределы слева и справа от точки разрыва соответственно.

Также из курса математического анализа известно , что использование усеченного ряда Фурье, содержащего только первых членов вместо бесконечной суммы, приводит к приближенному представлению сигнала :


при котором обеспечивается минимум среднего квадрата ошибки. Рисунок 3 иллюстрирует приближение периодической последовательности прямоугольных импульсов и периодического пилообразного сигнала при использовании различного количества членов ряда Фурье .

Рисунок 3. Приближение сигналов усеченным рядом Фурье:

А — прямоугольных импульсов; б — пилообразного сигнала

Ряд Фурье в комплексной форме

В предыдущем параграфе мы рассмотрели тригонометрический ряд Фурье для разложения произвольного периодического сигнала , удовлетворяющего условиям Дирихле. Применив формулу Эйлера, можно показать:


Тогда тригонометрический ряд Фурье (2) с учетом (4):

Таким образом, периодический сигнал может быть представлен суммой постоянной составляющей и комплексных экспонент, вращающихся с частотами с коэффициентами для положительных частот , и для комплексных экспонент, вращающихся с отрицательными частотами .

Рассмотрим коэффициенты для комплексных экспонент, вращающихся с положительными частотами :

Выражения (6) и (7) совпадают, кроме того постоянную составляющую также можно записать через комплексную экспоненту на нулевой частоте:

Таким образом, (5) с учетом (6)-(8) можно представить как единую сумму при индексации от минус бесконечности до бесконечности:


Выражение (9) представляет собой ряд Фурье в комплексной форме. Коэффициенты ряда Фурье в комплексной форме связаны с коэффициентами и ряда в тригонометрической форме, и определяются как для положительных, так и для отрицательных частот . Индекс в обозначении частоты указывает номер дискретной гармоники, причем отрицательные индексы соответствуют отрицательным частотам .

Из выражения (2) следует, что для вещественного сигнала коэффициенты и ряда (2) также являются вещественными. Однако (9) ставит в соответствие вещественному сигналу , набор комплексно-сопряженных коэффициентов , относящихся как положительным, так и к отрицательным частотам .

Некоторые пояснения к ряду Фурье в комплексной форме

В предыдущем параграфе мы осуществили переход от тригонометрического ряда Фурье (2) к ряду Фурье в комплексной форме (9). В результате, вместо разложения периодических сигналов в базисе вещественных тригонометрических функций, мы получили разложение в базисе комплексных экспонент, с комплексными коэффициентами , да еще и появились отрицательные частоты в разложении! Поскольку данный вопрос часто встречает непонимание, то необходимо дать некоторые пояснения.

Во-первых, работать с комплексными экспонентами в большинстве случаев проще, чем с тригонометрическими функциями. Например, при умножении и делении комплексных экспонент достаточно лишь сложить (вычесть) показатели, в то время как формулы умножения и деления тригонометрических функций более громоздкие.

Дифференцировать и интегрировать экспоненты, пусть даже комплексные, также проще, чем тригонометрические функции, которые постоянно меняются при дифференцировании и интегрировании (синус превращается в косинус и наоборот).

Если сигнал периодический и вещественный, то тригонометрический ряд Фурье (2) кажется более наглядным, потому что все коэффициенты разложения , и остаются вещественными. Однако, часто приходится иметь дело с комплексными периодическими сигналами (например, при модуляции и демодуляции используют квадратурное представление комплексной огибающей). В этом случае при использовании тригонометрического ряда Фурье все коэффициенты , и разложения (2) станут комплексными, в то время как при использовании ряда Фурье в комплексной форме (9) будет использованы одни и те же коэффициенты разложения как для вещественных, так и для комплексных входных сигналов.

Ну и наконец, необходимо остановится на пояснении отрицательных частот, которые появились в (9). Этот вопрос часто вызывает непонимание. В повседневной жизни мы не сталкиваемся с отрицательными частотами. Например, мы никогда не настраиваем свой радиоприемник на отрицательную частоту. Давайте рассмотрим следующую аналогию из механики. Пусть имеется механический пружинный маятник, который совершает свободные колебания с некоторой частотой . Может ли маятник колебаться с отрицательной частотой ? Конечно нет. Как не бывает радиостанций, выходящих в эфир на отрицательных частотах, так и частота колебаний маятника не может быть отрицательной. Но пружинный маятник — одномерный объект (маятник совершает колебания вдоль одной прямой).

Мы можем также привести еще одну аналогию из механики: колесо, вращающееся с частотой . Колесо, в отличие от маятника вращается, т.е. точка на поверхности колеса перемещается в плоскости, а не просто совершает колебания вдоль одной прямой. Поэтому для однозначного задания вращения колеса, задать частоту вращения недостаточно, потому что необходимо задать также направление вращения. Вот именно для этого мы и можем использовать знак частоты.

Так, если колесо вращается с частотой рад/с против часовой стрелки, то считаем, что колесо вращается с положительной частотой, а если по направлению часовой стрелки, то частота вращения будет отрицательной. Таким образом, для задания вращения отрицательная частота перестает быть бессмыслицей и указывает направление вращения.

А теперь самое главное, что мы должны понять. Колебание одномерного объекта (например, пружинного маятника) может быть представлено как сумма вращений двух векторов, показанных на рисунке 4.

Рисунок 4. Колебание пружинного маятника

Как сумма вращений двух векторов

на комплексной плоскости

Маятник совершает колебания вдоль вещественной оси комплексной плоскости с частотой по гармоническому закону . Движение маятника показано горизонтальным вектором. Верхний вектор совершает вращения на комплексной плоскости с положительной частотой (против часовой стрелки), а нижний вектор вращается с отрицательной частотой (по направлению часовой стрелки). Рисунок 4 наглядно иллюстрирует хорошо известное из курса тригонометрии соотношение:

Таким образом, ряд Фурье в комплексной форме (9) представляет периодические одномерные сигналы как сумму векторов на комплексной плоскости, вращающихся с положительными и отрицательными частотами. При этом обратим внимание, что в случае вещественного сигнала согласно (9) коэффициенты разложения для отрицательных частот являются комплексно-сопряженными соответствующим коэффициентам для положительных частот . В случае комплексного сигнала это свойство коэффициентов не выполняется ввиду того, что и также являются комплексными.

Спектр периодических сигналов

Ряд Фурье в комплексной форме представляет собой разложение периодического сигнала в сумму комплексных экспонент, вращающихся с положительными и отрицательными частотами кратными рад/c с соответствующими комплексными коэффициентами , которые определяют спектр сигнала . Комплексные коэффициенты могут быть представлены по формуле Эйлера как , где — амплитудный спектр, a — фазовый спектр.

Поскольку периодические сигналы раскладываются в ряд только на фиксированной сетке частот , то спектр периодических сигналов является линейчатым (дискретным).

Рисунок 5. Спектр периодической последовательности

Прямоугольных импульсов:

А — амплитудный спектр; б — фазовый спектр

На рисунке 5 приведен пример амплитудного и фазового спектра периодической последовательности прямоугольных импульсов (см. рисунок 1) при с, длительности импульса c и амплитуде импульсов В.

Амплитудный спектр исходного вещественного сигнала является симметричным относительно нулевой частоты, а фазовый спектр — антисимметричным. При этом заметим, что значения фазового спектра и соответствуют одной и той же точке комплексной плоскости .

Можно сделать вывод, что все коэффициенты разложения приведенного сигнала являются чисто вещественными, и фазовый спектр соответствует отрицательным коэффициентам .

Обратим внимание, что размерность амплитудного спектра совпадает с размерностью сигнала . Если описывает изменение напряжения во времени, измеряемое в вольт, то амплитуды гармоник спектра также будут иметь размерность вольт.

Выводы

В данном разделе рассмотрено представление периодических сигналов при помощи ряда Фурье. Приведены выражения для ряда Фурье в тригонометрической и комплексной формах. Мы уделили особое внимание условиям Дирихле сходимости ряда Фурье и были приведены примеры функций, для которых ряд Фурье расходится.

Мы подробно остановились на выражении ряда Фурье в комплексной форме и показали, что периодические сигналы как вещественные, так и комплексные представляются рядом комплексных экспонент с положительными и отрицательными частотами. При этом коэффициенты разложения являются также комплексными и характеризуют амплитудный и фазовый спектр периодического сигнала.

В следующем разделе мы более детально рассмотрим свойства спектров периодических сигналов.

Программная реализация в библиотеке DSPL

Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

Цель работы: ознакомление со спектральным описанием периодических функций с помощью рядов Фурье.

Необходимые теоретические сведения. Разложение в ряд Фурье

Первым рассматриваемым сигналом будет последовательность прямоугольных импульсов с амплитудой А , длительностью и периодом повторенияТ . Начало отсчета времени примем расположенным в середине импульса (рис.1).

Рис 1. - Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье- в ней будут присутствовать только косинусные слагаемые , равные

Введем скважность
в полученную формулу для коэффициентов ряда Фурье, а затем приведем формулу к виду
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

Амплитуды гармонических слагаемых ряда зависят от номера гармоники по закону
(см. рис. 2).График функции
имеет лепестковый характер. Итак, ширина лепестков, измеренная в количестве гармоник, равна скважности последовательности (при
имеем
, если
). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов - в нем отсутствуют (имеют нулевые амплитуды) гармоники с номерами, кратными скважности.

Рис. 2 - Коэффициенты ряда Фурье для последовательности прямоугольных импульсов.

Расстояние по частоте между соседними гармониками равно частоте следования импульсов -
. Ширина лепестков спектра, измеренная в единицах частоты, равна
, то есть обратно пропорциональна длительности импульсов, т.е. чем короче сигнал, тем шире его спектр.

Важным частным случаем предыдущего сигнала является меандр (рис. 3) - последова­тельность прямоугольных импульсов со скважностью, равной
, когда дли­тельности импульсов и промежутков между ними становятся равными.

Рис. 3 - Меандр

,

где m – произвольное целое число.

Таким образом, в спектре меандра присутствуют только нечетные гармоники. Представление меандра в виде ряда Фурье с учетом этого может быть записано следующим образом:

Гармонические составляющие, из которых складывается меандр, имеют ампли­туды, обратно пропорциональные номерам гармоник, и чередующиеся знаки. На примыкающих к разрыву участках сумма ряда Фурье дает заметные пульса­ции. Это явление, присущее ря­дам Фурье для любых сигналов с разрывами первого рода (скачками), называет­ся эффектом Гиббса. Можно показать, что амплитуда первого (самого большого) выброса составляет примерно 9 % от величины скачка.

Рисунок 4. Эффект Гиббса.

Пилообразный сигнал (рис. 5). в пре­делах периода описывается линейной функцией:

,
.

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

Рис. 5 - Пилообразный сигнал.

Периодическая последовательность треугольных импульсов имеет симметричную форму (рис. 6):

,
.

Рис. 6 - Последовательность треугольных импульсов.

Ряд Фурье имеет следующий вид:

Рассмотрим программу, реализующую разложение в ряд Фурье прямоугольной последовательности импульсов.

ЗАДАНИЕ1.