Как работает мобильная. Как работает мобильная связь: ликбез

Как-то раз друг, работающий инженером у одного сотового оператора, предложил устроить экскурсию по высоткам Белгорода и рассказать о том, как работает сотовая связь. Я, само собой, отказаться от такого не мог, и этот обзор стал самым интересным, что мне приходилось видеть за последнее время, не говоря уже о том, что с этих крыш открываются невероятно красивые виды родного города. Прежде чем начать это рассказ, хочу искренне поблагодарить Кирилла и за организацию этой экскурсии, и за техническую консультацию в процессе написания этой статьи.

Первой крыша стала высотка на улице Костюкова рядом с жилым комплексом «Владимирский». Этот 18-этажный дом стоит на холме, таким образом являясь одной из самых высоких точек города.

В любом городе крыши высотных зданий всегда облюбованы операторами сотовой связи - здесь установлено множество антенн.

Эти антенны бывают двух типов. Панельные прямоугольные, похожие по форме на пастилу - антенны сотовой связи, или «сектора». Через них ваш сотовый телефон или модем связывается с управляющим блоком - базовой станцией. Обычно несколько подключённых к одной базовой станции секторных антенн установлены под разными углами, чтобы обеспечить связью абонентов со всех сторон. Для оптимального покрытия (как технически, так и экономически), базовые станции расставляют таким образом, что схема их расположения напоминает пчелиные соты - отсюда и термин «сотовая связь». В реальности, конечно, идеальные соты получаются редко, так как на их расположение влияет множество других факторов, как то рельеф, возможность установки БС и количество абонентов. Секторные антенны устанавливаются также и непосредственно в зданиях, для обеспечения сигнала внутри них. В частности, indoor-сектора установлены внутри различных белгородских ТРЦ (Сити-Молле, Мега-Гринне, Рио и др.), в противном случае ваши мобильники не ловили бы там сеть.

Круглая антенна - радиорелейная (РРЛ). При помощи таких антенн осуществляется связь между базовыми станциями, если никакой другой связи между ними нет. Такое соединение называется радиорелейным пролётом. При установке 2 антенн очень важно, чтобы они были чётко направлены друг на друга (этот процесс называется юстировкой), потому что при малейшем отклонении сигнал становится хуже, уменьшая пропускную способность. Антенны могут быть разного диаметра (от 30 см до двух с половиной метров) и работать в разных частотных диапазонах (в зависимости от длины пролёта, типа местности и требований оператора).

Базовой станцией называется помещение, в котором располагается оборудования. Это может быть контейнер, выгородка в здании, изредка - термошкаф. В контейнер подаётся внешнее 3-фазное электроснабжение на 380 вольт. Электричество попадает на вводной щит, от которого запитываются потребители переменного тока (кондиционеры и охранно-пожарная сигнализация). От вводного щита запитан ИБП (источник бесперебойного питания), преобразующий переменный ток в постоянный на 48 вольт, от которого работает большая часть оборудования базовой станции. На фото - стойки оборудования и ИБП базовой станции GSM.

Стойка GSM-овской базовой станции внутри.

Источник бесперебойного питания. У базовой станции и оборудования транспортной сети (внутренних блоков антенн РРЛ, мультиплексоров и прочего) должны быть разные источники питания, так как при отключении питания оборудование транспортной сети должно «продержаться» дольше.

Базовая станция является низшей ступенью в сетевой иерархии. Несколько десятков территориально связанных станций через кабель подключаются к BSC (Base Station Controller, контроллер базовых станций), осуществляющий контроль за их работоспособностью и многими процессами, такими как хэндовер (переключение абонента с одной станции на другую без разрыва соединения), обновление местоположения и сигнализирование, а также параметрами работы. Шкаф контроллера.

Оборудование контроллера.

Оптический магистральный мультиплексор (устройство, комбинирующее несколько различных потоков данных для передачи по одной линии связи).

BSC это серьёзный транспортный узел с кучей радиорелейного, оптического оборудования, критичный к качеству электропитания, из-за чего на случай перебоя с питанием оборудуется серьёзными аккумуляторами (на фото) или ДГУ (дизельным генератором).

Ядром сети в отдельно взятом городе или регионе, с которым соединены контроллеры базовых станций, является MSC (Mobile Switching Centre, центр мобильной коммутации) - автоматическая телефонная станция или коммутатор. Именно MSC определяет, куда направлять звонки, а также обрабатывает звонки из внешних сетей (городской, других операторов) и посылает информацию о длительности разговоров и заказанных услугах в биллинговый центр. Многоуровневая структура сети необходима для более равномерной нагрузки - ведь если бы MSC, например, должен был осуществлять функцию хэндовера и другие функции контроллера базовых станций, нагрузка на него выросла бы в разы. Для проложенных между регионами опорных сетей используются оптоволоконные кабели, позволяющие моментально передавать огромные потоки данных.

Привычное вам слово «симка» происходит от английского сокращения SIM (Subscriber Identity Module, модуль идентификации подписчика). Каждая карта имеет IMSI (International Subscriber Identification Number, международный опознавательный номер абонента, тот самый длинный номер, который написан на ней мелкими цифрами). Когда вы включаете телефон, он передаёт этот номер на БС, откуда он затем идёт на BSC и далее на MSC. MSC запрашивает операторскую базу данных (HLR) о наличии такого абонента, и о том, можно ли ему предоставлять услуги связи (заплатил ли он, подключены ли они), а затем прописывает его в VLR - временной базе данных абонентов, находящихся в зоне действия данного MSC (это включает как и абонентов данной сети, так и роумеров - абонентов других сетей, в данный момент подключённых к ней).

GSM (изначально происходит от Groupe Spécial Mobile) - разработанный в Европе стандарт мобильной связи, фактически ставший мировым (хотя существуют и другие стандарты, например популярный в Америке CDMA). Этот стандарт был ориентирован в первую очередь на голосовую передачу данных. Сети третьего поколения (UMTS), которые иногда для показания преемственности называют 3GSM и в которых используется протокол HSDPA, значительно увеличивающий скорость передачи, уже более заточены именно под данные, хотя при отсутствии GSM-сети через 3G всё же можно сделать звонок. Что же касается LTE, сети 4 поколения, то она полностью оптимизирована для высокоскоростной передачи данных (хотя в российских реалиях многое зависит от развития у операторов т.н. «транспортной сети» - совокупности ресурсов и возможностей по передаче больших объемов информации и распределения этих объемов по базовым станциям).

На фото ниже - базовая станция LTE. В случае отключения электричества аккумуляторов хватит ещё на 5 часов работы.

Большой преградой для развития скоростного мобильного интернета в России является дефицит радиочастот. Нельзя просто установить оборудование и начать обслуживание, нужно сначала получить разрешение на использование частоты. Однако, частоты, необходимые для развёртывания таких сетей, часто бывают зарезервированы Министерством обороны в соответствии со стандартами 60-70 годов прошлого века, когда оборудованию нужны были широкие диапазоны. Выделение («конверсия») таких частот для гражданского использования - процедура дорогая и сложная как технически, так и бюрократически. Помимо того, вплоть до декабря 2013 года в России по закону частоты выделялись только под конкретные технологии, и если компания получала частоту, на которой ей разрешалось предоставлять услуги GSM-связи, она не имела права использовать эту же частоту для LTE. Из-за этого, например, Теле2, не получившая в своё время отдельной частоты для 3G и 4G, долгое время не могла начать предоставлять услуги скоростного мобильного интернета.

Отвлечёмся немного от технической стороны, и посмотрим по сторонам. С этого дома город видно как на ладони. Посмотрим в самый центр. В середине - здание городской администрации. Из-за него выглядывает Преображенский собор. Видны диорама «Огненная дуга» и художественный музей, парк имени Ленина.

Памятник князю Владимиру отсюда кажется совсем крошечным.

Корпуса БелГУ.

Вокзал и городской пляж.

«Технолог», вдали видны районы Старый Город и Крейда.

Внутренний двор ЖК «Владимирский».

Надо зафигачить лук

И конечно, панорамы. Белгород, какая красота!

С большим приближением (к сожалению погода была не идеальной, хоть и светило солнце, воздух был затянут дымкой, несмотря на задранный контраст, видно не очень хорошо.

Если смотреть с этой же крыши в южную сторону. Южная половина города в народе называется «Харьковской горой».

Следующим объектом, который мы посетили, стала 70-метровая сотовая вышка недалеко от БГТУ.

На вышке располагаются антенны, а в металлических будках - оборудование базовых станций. Сама вышка окружена забором из колючей проволоки, чтобы туда не лазили.

Чтобы залезть на вышку, нужно быть в хорошей физической форме. Я, хоть и хожу всё время в спортзал, под конец начал уставать. А Кирилл, который сам здоровенный качок, предложил представить, каково лезть на неё, ещё и таща на себе тяжёлое оборудование.

Но вообще сам процесс залезания изрядно доставил. Это здорово. Никакой страховки нет - держитесь крепче.

Неиспользуемая советская радиорелейная антенна, установленная ещё в 1970-е годы, которую слишком сложно демонтировать из-за её веса и габаритов, поэтому она продолжает здесь висеть. Эта конкретная вышка довольно старая и была построена ещё в те времена, однако, большинство вышек, которые нам встречаются, появились уже во время бурного развития в России сотовой связи.

Монтаж таких вышек обычно осуществляется при помощи вертолёта. На место на длинномерных тягачах привозятся собранные части конструкции весом 2-3 тонны каждая, после чего машина их подымает , а монтажники закрепляют. Красно-белая раскраска, увеличивающая видимость конструкции для летательных аппаратов, является требованием, прописанным в Руководстве по эксплуатации гражданских аэродромов РФ. Такая раскраска наносится на все высотные конструкции, мачты и заводские трубы.

Наверху вышки, как и на высотках, установлены красные огни светового ограждения, нужные для тех же целей, что и раскраска, но в тёмное время суток.

Как правило, на одной вышке находится оборудование сразу нескольких компаний. Сама вышка, при этом, может принадлежать лишь одному оператору (а другие платят аренду), либо нескольким, либо вообще принадлежать какой-то другой организации, которая не занимается услугами связи, а лишь сдаёт объект в аренду. С недавнего времени в России стало появляться также и совместное использование базовых станций.

Вышка немного качается на ветру - так и должно быть.

Всё сильнее хочется стать бейсером.

Строящийся микрорайон Новый-2 и гаражи, сверху напоминающие трущобы какого-нибудь латиноамериканского города. Отдельный гаражный кооператив рядом с жилым массивом - это такое чисто советское изобретение, на западе вызывающее недоумение.

Улица Губкина, Харгора.

Чуть поодаль в середине видны корпуса БГТУ. Справа вдали городской пляж. Вверху слева - высотка, на которой мы только что были.

Общий вид с крыши здания. В самой левой части - начало района Болховец и западная промзона (жёлтое пятно на горизонте - карьер цементного завода). Район Левобережье, центр Хоркиной (синее здание), БелГУ, парк Победы, застроенный коттеджами район Супруновка, железная дорога, район «Салют», две городские телебашни, улица (правильнее было бы назвать её проспектом) Щорса, ТЦ «Сфера», Первомайский район.

Парк Победы и центральная часть города, Супруновка.

Улица Щорса.

Две городские телебашни - старая (слева) и новая. Ночью они красиво подсвечиваются. На них попасть очень и очень сложно (если вы только не Вадим Махоров).

Улицы Плеханова и Горовца.

Западная промзона (цементный завод, Энергомаш, Белаци).

Один из недостатков Белгорода заключается в том, что здесь практически полностью отсутствуют исторические достопримечательности, что делает его малоинтересным для туристов. Дореволюционные здания точечно встречаются в центре, но они со всех сторон окружены современными. Здесь нет ни одной старинной улицы, какие есть в городах вроде Тулы , Ярославля или Владимира, разве что пара улиц со сталинской архитектурой. Сейчас весь центр застраивается стеклобетонными высотками, а прочие районы полностью состоят из таких вот многоэтажек. Панельные дома на переднем плане характерны для 80-х годов, те что дальше - типичная современная архитектура белгородских спальных районов.

Устройство керамической облицовки зданий. Помимо новых домов, её часто применяют для реставрации построек эпохи Хрущёва и Брежнева - квадратные здания, которые уже через два года после побелки начинают выглядеть облезло, будучи облицованными, выглядят вполне себе современно и эстетично.

Вентиляция.

В заключение мы поднялись на крышу бывшего завода «Электроконтакт». В советское время завод производил различное электрооборудование, но в девяностых годах закрылся из-за нерентабельности. Сейчас в его зданиях располагаются офисы и магазины, цеха используются как склады или пустуют.

На крыше одного из зданий установлены радиомачты.

Уютная такая крыша.

Рядом находится одна из городских достопримечательностей, деревянный храм святых мучениц Веры, Надежды, Любови и матери их Софии. В 2009 году эпически сгорел , но с того времени был отстроен заново.

Крыши цехов напоминают улицы заброшенного посёлка. Интересно, как можно туда попасть?

Улица Горького и кольцо Щорса-Королёва-Горького.

Не побоюсь сказать, что в познавательном плане эта была самая интересная экскурсия с момента посещения Зоны отчуждения 6 лет назад. Больше всего на свете я обожаю индустриальные инсайдерские экскурсии, когда можно посмотреть на то, что находится рядом с нами, тесно связано с нашей жизнью, но при этом малоизвестно и закрыто человеку с улицы.

Побывал в Дубовом (пригород Белгорода на юге от Харгоры). Привет, Настя:-)

Такой тихий и приятный спальный райончик. Большую часть его занимают коттеджи.

В этом году тут наконец-то заработал горнолыжный комплекс, который строился очень долго (правда, судя по отзывам, заработал скорее условно).

Если вечером прийти на пешеходный мост над разделяющим северную и южную части города частным сектором, можно встретить Повелительницу коз. Можно ли её вносить в список городских сумасшедших?

Прогулочные лодки на Везёлке.

Почему современные выпускники все такие габаритные? Я в 17 лет весил 55 килограммов, а тут посмотришь - прямо дяди и тёти какие-то. Наверное, виноваты голодные девяностые, в которые мы росли:-)

Обычно вид заходящего за белгородский университет солнца ассоциируется с J:Морсовской песней «Паветра», но в этот момент было странно осознавать, что лето ещё даже не началось, хотя накрепко привязавшаяся к прошлому апрелю «Весна» «Воплів Відоплясова» сюда тоже уже как-то не подходила... Было бы интересно понять, откуда у меня такое желание привязывать ко всему саундтреки.

З тобою літаю я там, де літо, там, де літо,
Там, де душа моя, ллється через край.
З тобою літаю я там, де літо, там, де літо,
Там, де душа моя понесе мене за небокрай.

З нами літо бавилось і сміялось,
З нами літо ділилось своїм теплом,
А під вечір так непомітно вкривалось
Синє небо золотом і вином ©

Структурная схема GSM сотового телефона

Структурная схема сотового радиотелефона, работающего в цифровом стан­дарте GSM (рис. 5.3), состоит из аналоговой и цифровой частей, которые обыч­но располагаются на отдельных платах. Аналоговая часть включает в себя прием­ное и передающее устройства, которые по своим характеристикам и построению напоминают описанные выше.

В системах стандарта GSM передатчик и приемник сотового телефона рабо­тают не одновременно. Передача осуществляется только в течение 1/8 длитель­ности кадра. Это значительно уменьшает расход энергии аккумуляторной бата-реи и увеличивает время функционирования как в режиме передачи (разговора), так и в режиме приема (ожидания). Кроме того, заметно снижаются требования к ВЧ-фильтру приемника, выполненному на ПАВ, что делает возможным интегра­цию МШУ со смесителем. Блок сопряжения прием-передача - это электронный коммутатор, подключающий антенну либо к выходу передатчика, либо ко входу приемника, поскольку сотовый телефон никогда не работает на прием и передачу одновременно.

Рис. 5.3. Функциональная схема радиотелефона цифрового стандарта GSM

Принимаемый сигнал после прохождения входного полосового фильтра уси­ливается МШУ и поступает на первый вход первого смесителя. На второй вход поступает сигнал гетеродина f прм с синтезатора частот. Сигнал первой промежу­точной частоты f пр, проходит через полосовой фильтр на ПАВ и усиливается уси­лителем первой промежуточной частоты УПЧ1, после чего поступает на первый вход второго смесителя. На второй его вход поступает сигнал гетеродина f г с ге­нератора частот. Полученный сигнал второй промежуточной частоты f пр2 фильт­руется полосовым фильтром на ПАВ, усиливается усилителем УПЧ2, демодулируется и поступает на аналого-цифровой преобразователь (АЦП), где преобразу­ется в сигнал, необходимый для работы цифрового логического блока, выполненного на центральном процессоре CPU.

В режиме передачи информационный цифровой сигнал, сформированный в логическом блоке, поступает на 1/О-генератор, где происходит формирование модулирующего сигнала. Последний поступает в фазовый модулятор, с которого сигнал f фм поступает в смеситель. На второй вход смесителя поступает сигнал f прд с синтезатора частот. Полученный сигнал f с1 через полосовой фильтр поступает в усилитель мощности (УМ), управляемый с помощью центрального процессора CPU. Усиленный до необходимого уровня сигнал f с1 через полосовой керамиче­ский фильтр поступает к антенне А и излучается в окружающее пространство.

Цифровая логическая часть сотового телефона (рис. 5.4) обеспечивает фор­мирование и обработку всех необходимых сигналов. Сердцевиной этой важной части цифрового телефона является центральный процессор CPU. Он выполнен в виде СБИС на микромощных полевых транзисторах со структурой «металл-ди­электрик-полупроводник» (МДП или MOS).

В состав цифровой части телефона входят:

Цифровой сигнальный процессор (CPU) со своей оперативной и постоян­ной памятью, осуществляющий управление работой сотового телефона. CPU телефонов несколько проще, чем микропроцессоры компьютеров, но тем не менее являются сложнейшими микроэлектронными изделиями.

Аналого-цифровой преобразователь (АЦП), который преобразует анало­говый сигнал с выхода микрофона в цифровую форму. При этом вся после­дующая обработка и передача сигнала речи производится в цифровой фор­ме, вплоть до обратного цифро-аналогового преобразования.

Кодер речи, осуществляющий кодирование сигнала речи, имеющего уже цифровую форму, по определенным законам с использованием алгоритма сжатия для сокращения избыточности сигнала. Таким образом осуществляется сокращение объема информации, которую необходимо передавать по радиоканалу связи.

Кодер канала, добавляющий в цифровой сигнал, получаемый с выхода ко­дера речи, дополнительную (избыточную) информацию, предназначенную для защиты от ошибок при передачи сигнала по линии связи. С этой же це­лью информация подвергается определенной переупаковке (перемежению). Кроме того, кодер канала вводит в состав передаваемого сигнала информа­цию управления, поступающего от логической части.

Декодер канала, выделяющий из входного потока данных управляющую информацию и направляющий ее в логический блок. Принятая информация проверяется на наличие ошибок, которые по возможности исправляются. Для последующей обработки принятая информация подвергается обратной по отношению к кодеру переупаковке.

Рис. 5.4. Цифровая и логическая часть мобильного сотового телефона

Декодер речи, восстанавливающий поступающий на него с декодера канала цифровой сигнал речи, переводящий его в естественную форму, со свойст­венной ему избыточностью, но по-прежнему в цифровом виде. Отметим, что для сочетания кодера и декодера, расположенных в одном корпусе ин­тегральной микросхемы, иногда употребляют название кодек (например, кодек речи, канальный кодек).

Цифро-аналоговый преобразователь (ЦАП), преобразующий принятый сигнал речи в аналоговую форму и подающий этот сигнал на вход усилите­ля динамика.

Эквалайзер, служащий для частичной компенсации искажений сигнала из-за многолучевого распространения. Эквалайзер является адаптивным фильтром, настраиваемым по обучающей последовательности символов, входящих в состав передаваемой информации. Этот блок, вообще говоря, не является функционально необходимым и в некоторых случаях может от­сутствовать.

Клавиатура, представляющая собой наборное поле с цифровыми и функ­циональными клавишами для набора номера вызываемого абонента, а так­же команд, определяющих режим работы сотового телефона.

Дисплей, служащий для отображения различной информации, предусмот­ренной устройством и режимом работы станции.

Блок шифрования и дешифрования сообщений, предназначенный для обеспечения конфиденциальности передачи информации.

Детектор речевой активности (voice activity detector), включающий пе­редатчик на излучение только на те интервалы времени, когда абонент го­ворит. На время паузы в работе передатчика в тракт дополнительно вводит­ся так называвемый комфортный шум. Это сделано в интересах экономного расходования энергии источника питания, а также снижения уровня помех для других станций.

Терминальные устройства, используемые для подключения через специ­альные адаптеры с использованием соответствующих интерфейсов, факс-аппаратов, модемов и др.

SIM-карта (SIM - subscriber identification module, буквально - мо­дуль идентификации абонента) - пластиковая пластина с микросхемой, вставляемая в специальное гнездо абонентского аппарата. В SIM-карте хранятся:

Данные, присваиваемые каждому абоненту: международный идентифика­ционный номер подвижного абонента (IMSI), ключ аутентификации або­нента (Ki) и класс управления доступом;

Временные данные о сети: временные идентификационный номер под­вижного абонента (TMSI), идентификатор области местоположения (LAI), ключ шифрования (Ке), данные о запрещенных для доступа под­вижных сетях;

Данные, относящиеся к обслуживанию: предпочтительный язык обще­ния, уведомления об оплате и перечень заявленных услуг.

Одна из основных задач SIM-карты состоит в обеспечении защиты от несанк­ционированного использования сотового телефона. На уровне абонентского ин­терфейса на SIM-карте записывается персональный идентификационный номер (PIN-номер) длиной от 4 до 8 разрядов, который микропроцессор SIM-карты по­сле включения станции сверяет с номером, набираемым пользователем с помо­щью клавиатуры. Если три раза подряд набран ошибочный PIN-номер, использо­вание SIM-карты блокируется до тех пор, пока абонент не введет 8-разрядный персональный ключ разблокирования (PUK).

Если ошибочный PUK вводится 10 раз подряд, использование SIM-карты пол­ностью блокируется и абонент будет вынужден обратиться к оператору сети.

Кроме того, благодаря SIM-картам имеется возможность звонить не только со своего сотового телефона, но и с любого другого GSM-телефона, достаточно вста­вить SIM-карту в аппарат и набрать личный идентификационный PIN-номер.

5.3 Услуги сотовой связи. Конфиденциальность связи. Фрод в сотовой связи. Биологическая безопасность.

В системах второго поколения пользователю могут быть предоставлены основные и дополнительные услуги связи. Основные услуги связи: телефонная связь, экстренные вызовы, передача коротких сообщений, факсимильная связь. Услуга экстренного вызова позволяет устанавливать абонентской станции речевую связь с ближайшим центром экстренной службы. К дополнительным услугам связи относятся:

· услуги по распознаванию номера;
· переадресация и перенаправление вызова;
· услуги завершения связи (вызов на удержании, вызов с ожиданием и т.п.);
· конференц-связь;
· услуги по учету стоимости переговоров;
· услуги группового соединения;
· услуги по ограничению вызовов и др.

В условиях конкурентной борьбы за абонента операторы крупных сетей стараются внедрять новые услуги. В последнее время были введены такие услуги, как подключение абонента на условиях предоплаты, услуга WAP – доступ в сеть Интернет непосредственно с мобильного терминала, система глобального позиционирования GPS, видеосвязь и др.. Но такие возможности появились с появлением коммуникаторов (смартфонов).

Конфиденциальность связи обеспечивается защитой от несанкционированного доступа к каналам связи. Для этого используются различные методы шифрования. Например в стандарте GSM шифрование осуществляется путем помехоустойчивого кодирования и перемежения и заключается в поразрядном сложении по модулю 2 информационной битовой последовательности и псевдослучайной битовой последовательности, составляющей основу шифра. Повторное применение операции сложения по модулю 2 с той же псевдослучайной последовательностью к зашифрованной инфомационной последовательности восстанавливает исходную информационную битовую последовательность, то есть реалищует дешифрацию шифрованного сообщения (рис.).

Существует еще возможность защиты от подслушивания – это скремлирование (scrambling – перемешивание, перетасовка), являющееся своебразным шифрование путем перестановки участков спектра или сегментов речи, осуществляемое во внешнем по

Рис.5.5. Принцип шифрования и дешифрации информации в стандарте GSM.

отношению к мобильному телефону устройстве с соответствующим дескремблированием на приемном конце.

Фрод (от англ. fraud - обман, мошенничество) - одна из серьезных про­блем сотовой связи. Фрод можно определить как незаконную деятельность, на­правленную на использование услуг сотовой связи без надлежащей оплаты или за счет оплаты этих услуг людьми, такими услугами не пользующимися.

Время от времени мировую и нашу прессу потрясают сообщения о мошенни­чествах в области сотовой связи. Самое неприятное, когда зарегистрированный за кем-то сотовый телефон попадает в руки мошенников, способных обмануть по­ставщиков сотовой связи и бесконтрольно осуществлять переговоры в большом объеме. Порой для этого используются примитивные приемы (например, злост­ные неплатежи), а порой весьма тонкие методы, основанные на прекрасном зна­нии документации по сотовым сетям связи. Практикуется переделка номеров со­товых аппаратов и всевозможная «химия» с шифрами и паролями.

Потери от фрода, даже после многих лет борьбы с ним, достигают несколь­ких процентов от общего объема услуг сотовой связи. К примеру, в 1996 г. в США они составили сумму чуть более 1 млрд долл. при общем доходе от сотовой связи 21 млрд долл. Данные о таких потерях большинство операторов старается не публиковать, и они становятся известными общественности спустя годы после крупных «проколов».

Если у вас появилось подозрение, что кто-то пользуется (явно или неявно) вашим аппаратом, то необходимо немедленно поставить в известность об этом поставщика услуг сотовой связи. Например, такое подозрение может базировать­ся на заметном увеличении объема оплаты услуг сотовой связи по сравнению с привычным для вас уровнем. Если не проконтролировать случившееся, то вы мо­жете неожиданно получить счет на сотни, если не на тысячи долл.. И будете втя­нуты в долгую судебную тяжбу с неясным исходом.

Кроме фрода, огромный ущерб сотовой связи наносит продажа «серых» теле­фонов. Это могут быть приобретенные по дешевке забракованные аппараты, кото­рые затем кустарно доводятся до рабочего состояния - нередко далеко не по всем функциональным возможностям. Такие аппараты доставляют массу хлопот не только их владельцам, позарившимся на дешевизну, но и операторам сотовой связи. Ибо, плохо выполняя (или вообще не выполняя) многие функции, они вы­зывают шквал звонков в службы сервиса.

Подслушивание разговоров по сотовым телефонам - тоже далеко не без­обидная вещь. Особенно уязвимы в этом аналоговые сети. Но и в цифровых се­тях, даже при наличии соответствующего оборудования для кодирования и деко­дирования разговоров, подслушивание их тоже вполне возможно. Об этом стоит помнить, ведя разговоры.

Приемы незаконного использования сотовых те­лефонов разнообразны, хотя и существует мнение о том, что об этом надо знать. Только вот в каком объеме? К примеру, всякому ясно, что сотовый телефон можно использо­вать в качестве очень простого радиовзрывателя. Однако описание пусть даже простой схемы такого применения едва ли можно приветствовать. Соответствую­щие органы мигом могут признать это пособием для террористов. Поэтому, пре­дупредив пользователя о наличии брешей в законном применении сотовых теле­фонов, мы на этом окончим описание этих тонких моментов в применении мо­бильных телефонов.

Биологическая безопасность.

Время от времени появляются сенсационные новости о развитии раковых опухолейот использовании сотового телефона. Где-то в США вроде были даже судебные процессы по этому поводу. Встречаются и сообщения о взрывах авто­стоянокво время заправки автомобилей, о сбившихся с курса самолетах, об остановившихся по вине сотовых телефонов реакторах атомных электростанций и т.д. В подавляющем большинстве случаев документального подтверждения такие «новости» не находят.

В самом деле частоты сотовой связи относятся к тому виду электромагнитно­го излучения, которое легко поглощается тканями наших рук, головы и головного мозга. Исследования показали, что до 60 % энергии излучения сотового телефона поглощается тканями головы человека. Правда, только часть энергии СВЧ-излучения попадает вглубь головы. Большая часть поглощается кожей и костями черепа.

Между тем никаких официальных данных о каком-либо влиянии излучения сотовых телефонов на организм человека нет. И не потому, что соответствующие исследования не проводились. А потому, что нормы на мощность излучения на­много меньше тех норм, которые были установлены для людей соответствующи­ми инстанциями.

Степень поглощения энергии электромагнитного излучения организмом чело­века является величина SAR (Specific Absorption Rates). Она выражается в энер­гии поглощенного излучения на единицу массы (г или кг) биоткани. При этом за 20 минут воздействия ткань нагревается на 1 °С.

Нетрудно понять, что такой чисто «термодинамический» подход отнюдь не способствует успокоению людей. Ибо не надо обладать обширными медицински­ми познаниями, чтобы считать, что действие излучения сводится отнюдь не толь­ко к нагреву тканей организма. Нельзя не учитывать, что на генетическом уровне куда менее мощное излучение способно вызвать нарушение клеточной структуры тела или повреждение генов. Поэтому, в Европе, к примеру, установлена норма SAR в 2 мВт /г.

Между прочим, есть простой способ кардинально ослабить степень воздейст­вия радиоизлучения мобильных телефонов на организм человека, и прежде всего на его голову. Это применение специальной гарнитуры hands free (свободные руки). Эта гарнитура представляет собой закрепляемый на голове наушник и микрофон, а также пульт управления радиотелефоном. Сам телефон может быть установлен в отдалении. Возможно подключение к нему и внешней антенны, ко­торая может быть установлена за окном или даже на крыше автомобиля.

Кстати, из всех видов опасности, связанной с сотовыми телефонами, на пер­вом месте стоит отвлечение пользователя от своей основной работы. Например, весьма часты автомобильные аварии, связанные с тем, что водитель во время езды берет телефон в руки, и особенно когда он набирает номер. Во многих стра­нах, включая и Россию, это запрещено и преследуется штрафами. Гарнитура hands free и голосовое управление телефоном - вот основные средства против этого фактора.

Контрольные вопросы

1. Назовите типовые блоки абонентской мобильной станции?

2. Раскажите устройство и основное назначение узлов аналогового мобильного телефона?

3. Раскажите устройство и основное назначение узлов цифрового мобильного телефона?

4. Дайте определение «фрод» и чем он опасен?

5. Перечислите основные меры, направленные на снижения влияния излучения сотовой связи на организм человека?

6. Основные симптомы проявления болезни обусловленной радиоизлучением?

7. Перечислите основные услуги предоставляемой сотовой связью?

8. Как обеспечивается конфиденциальность связи в мобильных сетях?


Для этого предлагаем вам отправиться в компанию «Билайн ».

На территории России установлено огромное количество БС - базовых станций. Наверное, многие из вас сами видели возвышающиеся в полях красно-белые конструкции или установленные на крышах нежилых зданий сооружения. Каждая такая базовая станция способна поймать сигнал от сотового телефона на расстоянии до 35 км, связываясь с ним по служебным или голосовым каналам .

После того, как вы набрали на своем телефоне номер нужного абонента , происходит следующее: мобильник находит ближайшую БС, связывается с ней по служебному каналу и запрашивает голосовой канал . После этого БС отсылает запрос на контроллер (BSC), который затем поступает на коммуникатор. Если вызываемый абонент обслуживается у того же оператора , что и вы, то коммуникатор проведет сверку с базой данных Home Location Register (HLR), чтобы выяснить, где именно находится тот, кому вы звоните, и перенаправит вызов на нужный коммутатор , который затем переведет звонок на контроллер и далее на Базовую Станцию. Ну и наконец, Базовая Станция свяжется с мобильным телефоном нужного человека и соединит вас с ним. А если тот, с кем вы хотите поговорить, является абонентом другого сотового оператора , или вы звоните на городской номер , то коммутатор «найдет» соответствующий коммутатор другой сети и обратится к нему. Звучит достаточно запутанно, правда? Попробуем разобрать этот вопрос более подробно.

Но вернемся к оборудованию. Как мы уже говорили, с БС вызов переводится на контроллер (BSC). Внешне он мало чем отличается от Базовой Станции :

Количество БС, которые в состоянии обслужить контроллер, может достигать шести десятков. Контроллер и БС связываются по оптическому или радиорелейному каналам . Контроллер управляет работой радиоканалов.

Ниже вы можете увидеть, что из себя представляет коммутатор :

Количество обслуживаемых коммутатором контроллеров варьируется от двух до тридцати. Коммутаторы размещают в больших помещениях, заполненных металлическими шкафами с оборудованием.

Задача коммутатора состоит в управлении трафиком . Если раньше чтобы поговорить друг с другом, абонентам нужно было сначала связываться с телефонисткой, которая затем вручную переставляла нужные провода, то теперь с ее ролью отлично справляется коммутатор .

Внутри автомобилей располагаются устройства, предназначенные для съема и обработки данных :

Контроллеры и коммутаторы находятся под бдительным контролем 24 часа в сутки. Слежение ведется в так называемом ЦКС (Центре Управления Полeтами Цeнтра Контрoля Сeти).

Сотовая связь считается одним из самых полезных изобретений человечества - наряду с колесом, электричеством, интернетом и компьютером. И лишь за несколько десятилетий эта технология пережила целый ряд революций. С чего начиналось беспроводное общение, как работают соты и какие возможности откроет новый мобильный стандарт 5G?

Первое использование подвижной телефонной радиосвязи относится к 1921 году - тогда в США полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приемникам в автомобилях полицейских.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году - над ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные перспективы ее воплощения стали вырисовываться только к началу 1970-х годов, когда сотрудники компании разработали рабочую архитектуру аппаратной платформы сотовой связи.

Так, американские инженеры предложили размещать передающие станции не в центре, а по углам «ячеек», а чуть позже была придумана технология, позволяющая абонентам передвигаться между этими «сотами», не прерывая связи. После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola - ее инженер Мартин Купер 3 апреля 1973 года продемонстрировал первый работающий прототип мобильного телефона. Он позвонил начальнику исследовательского отдела компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный проект 100 миллионов долларов, однако на коммерческий рынок технология вышла только через десять лет. Такая задержка связана с тем, что сначала требовалось создать глобальную инфраструктуру базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T - телекоммуникационный гигант добился от федерального правительства лицензирования нужных частот и построил первую сотовую сеть, которая охватила крупнейшие американские города. В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года. Он весил почти 800 граммов, мог работать на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При этом аппарат стоил 3995 долларов - баснословную сумму по тем временам. Несмотря на это, мобильник мгновенно стал популярен.

Почему связь называется сотовой

Принцип мобильной связи прост - территория, на которой обеспечивается соединение абонентов, разбивается на отдельные ячейки или «соты», каждую из которых обслуживает базовая станция. При этом в каждой «соте» абонент получает идентичные услуги, поэтому сам он никак не чувствует пересечения этих виртуальных границ.

Обычно базовая станция в виде пары железных шкафов с оборудованием и антенн размещается на специально построенной вышке, однако в городе их нередко размещают на крышах высотных зданий. В среднем каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров.

Для улучшения качества обслуживания операторы также устанавливают фемтосоты - маломощные и миниатюрные станции сотовой связи, предназначенные для обслуживания небольшой территории. Они позволяют резко улучшить покрытие в тех местах, где это необходимо.Сотовую связь в России объединят с космосом

Находящийся в сети мобильник прослушивает эфир и находит сигнал базовой станции. В современную SIM-карту, кроме процессора и оперативки, вшит уникальный ключ, позволяющий авторизоваться в сотовой сети. Связь телефона со станцией может осуществляться по разным протоколам - например, цифровым DAMPS, CDMA, GSM, UMTS.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Если телефон выходит из поля действия базовой станции, аппарат налаживает связь с другими - установленное абонентом соединение незаметно передается другим «сотам», что обеспечивает непрерывную связь при перемещениях.

В России для вещания сертифицированы три диапазона - 800 МГц, 1800 МГц и 2600 МГц. Диапазон 1800 МГц считается самым популярным в мире, так как сочетает высокую емкость, большой радиус действия и высокую проникающую способность. Именно в нем сейчас работают большинство мобильных сетей.

Какие стандарты мобильной связи бывают

Первые мобильники работали с технологий 1G - это самое первое поколение сотовой связи, которое опиралось на аналоговые телекоммуникационные стандарты, главным из которых стал NMT - Nordic Mobile Telephone. Он предназначался исключительно для передачи голосового трафика.

К 1991 году относят рождение 2G - главным стандартом нового поколения стал GSM (Global System for Mobile Communications). Данный стандарт поддерживается до сих пор. Связь в этом стандарте стала цифровой, появилась возможность шифрования голосового трафика и отправки СМС.

Скорость передачи данных внутри GSM не превышала 9,6 кбит/с, что делало невозможной передачу видео или высококачественного звука. Проблему был призван решить стандарт GPRS, известный как 2.5G. Он впервые позволил пользоваться сетью Интернет владельцам мобильных телефонов.


Такой стандарт уже обеспечил скорость передачи данных до 114 Кбит/c. Однако вскоре он также перестал удовлетворять постоянно растущие запросы пользователей. Для решения этой проблемы в 2000 году был разработан стандарт 3G, который обеспечивал доступ к услугам Сети на скорости передачи данных в 2 Мбита.

Еще одним отличием 3G стало присвоение каждому абоненту IP-адреса, что позволило превратить мобильники в маленькие компьютеры, подключенные к интернету. Первая коммерческая сеть 3G была запущена 1 октября 2001 года в Японии. В дальнейшем пропускная способность стандарта неоднократно увеличивалась.

Наиболее современный стандарт - связь четвертого поколения 4G, которая предназначена только для высокоскоростных сервисов передачи данных. Пропускная способность сети 4G способна достигать 300 Мбит/сек, что дает пользователю практически неограниченные возможности работы в интернете.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов информации, в нем даже отсутствует канал для передачи голоса. За счет чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения связи стандарта 5G, который позволит передачу больших объемов данных на сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей - миллиарды устройств будут обмениваться информацией в реальном времени. По оценке экспертов, сетевой трафик скоро вырастет на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное и постоянно действующее соединение впервые откроет возможность для запуска на дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями - например, работы в этом направлении ведет «Ростелеком». Компания подписала соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация проекта входит в государственную программу «Цифровая экономика», недавно утвержденную правительством.

Все мы пользуемся мобильными телефонами, но при этом редко кто задумывается - как же они работают? В данной статье мы постараемся разобраться, как, собственно, реализуется связь относительно вашего мобильного оператора.

Когда вы осуществляете звонок своему собеседнику, или кто-то звонит вам, ваш телефон соединяется по радиоканалу с одной из антенн соседней базовой станции (БС, BS, Base Station) .Каждая базовая станция сотовой связи (в простонародье - вышки сотовой связи) включает в себя от одной до двенадцати приемо-передающих антенн , имеющих направления в разные стороны с целью обеспечения качественной связью абонентов в радиусе своего действия. Такие антенны специалисты на своем жаргоне называют «секторами» , представляющими собой серые прямоугольные конструкции, которые вы можете практически каждый день видеть на крышах зданий или специальных мачтах.


Сигнал от такой антенны поступает по кабелю прямо в управляющий блок базовой станции. Базовая станция является совокупностью секторов и управляющего блока. При этом определенную часть населенного пункта или территории обслуживают сразу несколько базовых станций, подключенных к специальному блоку - контроллеру локальной зоны (сокращенно LAC, Local Area Controller или просто «контроллер»). Как правило, один контроллер объединяет до 15 базовых станций определенного района.

Со своей стороны, контроллеры (их также может быть несколько) соединены с самым главным блоком - Центром управления мобильными услугами (MSC, Mobile services Switching Center) , который для упрощения восприятия принято называть просто «коммутатором» . Коммутатор, в свою очередь, осуществляет вход и выход на любые линии связи - как сотовой, так и проводной.

Если отобразить написанное в виде схемы, то получится следующее:
GSM-сети небольшого масштаба (как правило, региональные) могут использовать всего один коммутатор. Крупные же, такие как наши операторы «большой тройки» МТС, Билайн или МегаФон, обслущивающие одновременно миллионы абонентов, используют сразу несколько объединенный между собой устройств MSC.

Давайте разберемся, зачем нужна столь сложная система и почему нельзя подключить антенны базовых станций к коммутатору напрямую? Для этого нужно рассказать про еще один термин, называемый на техническом языке handover (хэндовер) . Он характеризует собой передачу обслуживания в мобильных сетях по эстафетному принципу. Иными словами, когда вы перемещаетесь по улице пешком или в транспортном средстве и говорите при этом по телефону, то, чтобы ваш разговор при этом не прерывался, следует своевременно переключать ваш аппарат из одного сектора БС в другой, из зоны действия одной базовой станции или контроллера локальной зоны в другую и т.д. Следовательно, если бы сектора базовых станций подключались к коммутатору напрямую, ему бы пришлось самому осуществлять данную процедуру хендовера всех своих абонентов, а у коммутатора и без того хватает задач. Поэтому для уменьшения вероятности отказов оборудования, связанных с его перегрузками, схема построения сотовых сетей GSM реализуется по многоуровнему принципу.

В итоге, если вы со своим телефоном перемещаетесь из зоны обслуживания одного сектора БС в зону действия другого, то данное перемещение осуществляет блок управления данной базовой станции, не касаясь при это более «высокостоящих» устройств - LAC и MSC. Если же хэндовер происходит между разными БС, то за него берется уже LAC и т. д.

Коммутатор - ни что иное, как основной «мозг» сетей GSM, поэтому его работу следует рассмотреть более детально. Коммутатор сотовой сети берет на себя примерно те же задачи, что и АТС в сетях проводных операторов. Именно он понимает, куда вы осуществляете звонок или кто звонит вам, регулирует работу дополнительных услуг и, собственно, решает - можете ли вы в настоящее время осуществить свой звонок или нет.

Теперь давайте разберемся, что же происходит, когда вы включаете свой телефон или смартфон?

Итак, вы нажали «волшебную кнопку» и ваш телефон включился. На SIM-карте вашего сотового оператора находится специальный номер, который носит название IMSI - International Subscriber Identification Number (Международный опознавательный номер абонента) . Он является уникальным номером для кажой SIM-карты не только у вашего оператора МТС, Билайн, МегаФон и т.п., а уникальным номером для всех мобильных сетей в мире! Именно по нему операторы отличают абонентов между собой.

В момент включения телефона ваш аппарат посылает данный код IMSI на базовую станцию, которая передает его далее на LAC, он же, в свою очередь, отсылает его на коммутатор. При этом в нашу игру вступают два дополнительных устройства, свзанных непосредственно с коммутатором - HLR (Home Location Register) и VLR (Visitor Location Register) . В переводе на русский это, соответственно, Регистр домашних абонентов и Регистр гостевых абонентов . HLR хранит в себе IMSI всех абонентов своей сети. В VLR же содержится информация о тех абонентах, которые пользуются сетью данного оператора в настоящее время.

Номер IMSI передается в HLR с помощью системы шифрования (за этот процесс отвечает еще одно устройство AuC - Центр аутентификации) . HLR при этом проверяет, существует ли в его базе абонент с данным номером, и если факт его наличия подтверждается, система смотрит, может ли он в настоящее время пользоваться услугами связи или, скажем, имеет финансовую блокировку. Если все нормально, то данный абонент отправляется в VLR и после этого получает возможность звонить и пользоваться другими услугами связи.

Для наглядности отобразим данную процедуру с помощью схемы:

Таким образом, мы коротко описали принцип работы сотовых сетей GSM. На самом деле, это описание достаточно поверхностно, т.к. если углубиться в технические детали подробнее, то материал бы получился во много раз объемнее и гораздо менее понятным для большинства читателей.

Во второй части мы продолжим знакомство с работой сетей GSM и рассмотрим, как и за что оператор списывает средства с нашего с вами счета.