Двухзвенные и многозвенные схемы коммутации. Общие сведения о телекоммуникационных станциях

Второй формой реализации многозвенной коммутационной схемы со звеньями пространственной и временной коммутации является структура, приведенная на . Эту коммутационную схему обычно называют схемой время - пространство - время. Информация, поступающая по каналу входящего тракта с ВРК , задерживается на входящем звене временной коммутации до тех пор, пока не будет найден соответствующий свободный путь через звено пространственной коммутации.


В этот момент информация будет передана через звено пространственной коммутации на соответствующее выходное звено временной коммутации, где она будет храниться до тех пор, пока не наступит временной интервал, в котором требуется осуществить передачу данной информации. Предполагая, что на звеньях временной коммутации обеспечивается полнодоступность (т. е. все входящие каналы могут быть соединены со всеми исходящими), при установлении соединения на звене пространственной коммутации можно использовать любой временной интервал. В функциональном смысле звено пространственной коммутации как бы повторяется (копируется) по одному разу для каждого внутреннего временного интервала Это иллюстрирует вероятностный граф схемы ВПВ , приведенный на .


Важной особенностью коммутационной схемы ВПВ , на которую следует обратить внимание, является то, что звено пространственной коммутации работает с разделением времени независимо от внешних трактов с ВРК . По существу, число временных интервалов работы звена пространственной коммутации l не должно совпадать с числом временных интервалов с внешних трактов с ВРК .
Если звено пространственной коммутации является неблокирующейся коммутационной схемой, то блокировка в схеме ПВП может возникать в тех случаях, когда нет свободных внутренних временных интервалов звена пространственной коммутации, в течение которых промежуточная соединительная линия, ведущая от входящего звена временной коммутации, и промежуточная соединительная линия, ведущая к исходящему звену временной коммутации, одновременно свободны. Очевидно, что вероятность блокировки будет минимальней, если число временных интервалов звена пространственной коммутации l будет выбрано достаточно большим. Действительно, проводя прямую аналогию с трехзвенными пространственными коммутационными схемами, схему ПВП можно считать неблокирующейся, если l=2c-1. Общее выражение для вероятности блокировки для коммутационной схемы ВПВ , отдельные звенья которой (В, П, В) являются неблокирующимися, имеет вид

Где - коэффициент временного расширения (l/с), l - число временных интервалов работы звена пространственной коммутации.
Сложность реализации ВПВ -коммутации можно рассчитать по следующей формуле

Cтруктура ВПВ более сложная, чем структура ПВП . Заметим, однако, что в коммутационной схеме ВПВ используется временная концентрация, а в схеме ПВП - пространственная. По мере того, как будет расти использование входящих соединительных линий, будет уменьшаться степень возможной концентрации. Если окажется, что нагрузка входящих каналов достаточно высока, то для поддержания заданного значения вероятности блокировки в коммутационных схемах ВПВ и ПВП необходимо вводить расширение соответственно в первой - временное, во второй - пространственное. Поскольку реализация временного расширения значительно дешевле, чем пространственного, то при высоком использовании каналов коммутационная схема ВПВ окажется более экономичной, чем схема ПВП . На приведены зависимости сложности реализации схем ПВП и ВПВ от использования входящих каналов.


Как видно из , коммутационные схемы ВПВ имеют четко выраженное преимущество перед схемами ПВП в области больших значений использования каналов. Для коммутационных схем малой емкости более предпочтительной оказывается структура ПВП . Возможно, что выбор конкретной архитектуры в значительно большей степени будет зависеть от других факторов, таких как модульность, простота организации тестирования, легкость наращивания емкости. Одним из моментов, который обычно выделяют, отдавая предпочтение структуре ПВП , является относительно более простые требования к организации управления схемами ПВП , чем схемами ВПВ . Для станций большой емкости с большой нагрузкой необходимость преимущественного использования структуры ВПВ становится совершенно очевидной. В подтверждение справедливости этого утверждения можно привести систему № 4 ESS со структурой ВПВ , которая является самой большой по емкости коммутационной схемой, построенной до настоящего времени.
Коммутационные схемы типа ВПППВ . Если звено пространственной коммутации схемы ВПВ оказывается достаточно большим по емкости, что приводит и к дополнительному увеличению сложности управляющего устройства, то для уменьшения общего числа точек коммутации звено пространственной коммутации заменяется многозвенной схемой. На приведена структура типа ВПВ , когда звено пространственной коммутации заменено трехзвенной схемой.


Поскольку три соседних звена являются звеньями пространственной коммутации, то эту структуру иногда называют коммутационной схемой ВПППВ. Сложность реализации схемы ВПППВ можно определить следующим образом:


Результаты показывают, что коммутационные схемы сверхбольшой емкости могут быть реализованы с использованием методов цифровою временного разделения на вполне приемлемом для практики уровне сложности. В середине 60-х годов стало очевидно, что на телефонной сети США необходимо использовать коммутационные схемы именно такой емкости. Поскольку для реализации сопоставимой с ними по емкости восьмизвеннои схемы пространственной коммутации потребовалось бы порядка 10 млн. точек коммутации, то традиционная технология, используемая при построении систем с пространственным разделением, была срезу же отвергнута, и фирма Bell System приступила к разработке системы № 4 ESS. Это была первая цифровая коммутационная система телефонной сети США, введенная в эксплуатацию в 1976 г. Система № 4 ESS (коммутационная схема типа ВПППВ) имеет емкость 107 520 соединительных линий, обеспечивает вероятность блокировки менее 0,005 при вероятности занятия канала 0,7 (11).

mstheme>

При большом числе пользователей более эффективны схемы коммутации, содержащие много звеньев. На рис. 2.3. приведена двухзвенная схема коммутации. Для определения

областей применения сравним эту и предыдущую схемы по числу тре­буемых точек коммутации.

Рис. 2 Двухзвенная коммутационная схема

На рис. 2 приняты следующие
обозначения: -

я - число входов в матрицу

звена А; г - число матриц звена А; т - число промежуточных ли­ний между звеньями А и В; s - количество входов в матри­цу звена В; к- число выходов из матрицы

звена В; /- связность.

Связность - это число проме­жуточных линий, которые соединя­ют одну определенную матрицу зве­на А с одной определенной матри­цей звена В. Пусть необходимо коммутировать N входов с М выходами. Тогда будут соблю­даться следующие условия:

для полнодоступной коммутационной схемы число точек коммутации равно NM;

для неполнодоступной схемы коммутации число точек коммутации равно r{nm) + (m/f) (fa);

число коммутаторов звена А (г) зависит от требуемого общего числа входов N и составляет г = N/n;

Число коммутаторов звена В (m/f) зависит от требуемого общего числа выходов М, т.е. m/f=M/k.

Тогда число точек коммутации неполнодоступной коммутационной схемы будет равно Nm + Ms. Тем самым определяется условие того, что многозвенная коммутационная схема более эффективна, чем однозвенная: число коммутационных точек в ней должно быть мень­ше, чем в полнодоступной

Последнему условию может соответствовать множество сочетаний параметров комму­тационных схем, но для всех из них справедливы соотношения

т/М< 1 и s/N< 1 (гдеN, M, m, s 0).

Эти требования означают, что число выходов матрицы звена А не должно быть больше общего числа выходов всей коммутационной схемы М, а число входов звена В не должно быть больше общего числа входов в коммутационную схему N.

Такое условие выполняется для всех реальных задач. Число выходов матриц, которые используются для малых станций (100...500 входов и тот же диапазон числа выходов) варьи­руется от 4 до 8, а для больших емкостей (4000...300 000 входов и выходов) используются матрицы, имеющие 512 выходов. Из приведенных данных следует, что в современных теле­фонных станциях однозвенные коммутационные схемы во много раз менее экономичны, чем многозвенные. Однако небольшое число входов в коммутационную матрицу не позво­ляет построить коммутационную двухзвенную схему с достаточно большим числом выхо­дов. Для этих случаев применяются многозвенные схемы (рис. 3).

Рис. 3 Пример построения 4-звенной коммутационной схемы 512x512

На рис. 3 показан блок, содержащий 8 коммутационных матриц 8x8. Он имеет общее число входов N = 64 и выходов М = 64. Для увеличения числа входов и выходов строится схема из 8 блоков, которая позволяет увеличить число входов и выходов до N = М = 512.


Показанная на рис. 3 схема коммутации имеет равное количество входов и выходов, однако, для построения телефонных систем применяются различные типы блоков. Они различаются не только параметрами коммутаторов и числом каскадов, но и назначением. Например, известно, что уровень загрузки абонентских линий довольно низок (за исключе­нием таксофонов, линий с терминалами сети Интернет). В среднем они используются на 10-15%. Для межстанционных линий, стоимость которых очень высока, необходимо увели­чить интенсивность использования и тем самым снизить требования по числу линий, выде­ляемых для заданной группы абонентов. Поэтому для включения абонентских линий при­меняются специальные схемы с концентрацией (рис. 2.5).

Рис.4 Концентрация нагрузки на звене А: а) 2-звенная схема с концентрацией; б)пример создания матрицы с концентрацией

Для этого применяются матрицы, которые имеют число входов большее, чем число выхо­дов. Это может достигаться конструктивно или путем запараллеливания выходов (рис. 4). В цифровых системах коммутации широко применяются варианты, когда концентрация пу­тем запараллеливания делается на абонентских (терминальных) комплектах, что вносит до­полнительные удобства. При рассмотрении вопросов построения терминальных комплектов будут рассмотрены и такие варианты.

При появлении в конце 80-х начале 90-х годов быстрых протоколов, производительных персональных компьютеров, мультимедийной информации и разделении сети на большое количество сегментов классические мосты перестали справляться с работой. Обслужи вание потоков кадров между теперь уже несколькими портами с помощью одного процессорного блока требовало значительного повышения быстродействия процессора, а это довольно дорогостоящее решение.

Более эффективным оказалось решение, которое и «породило» коммутаторы: для обслуживания потока, поступающего на каждый порт, в устройство ставился отдельный специализированный процессор, который реализовывал алгоритм прозрачного моста. По сути, коммутатор - это мультипроцессорный мост, способный параллельно продвигать кадры сразу между всеми парами своих портов. Но если при добавлении процессорных блоков компьютер не перестали называть компьютером, а добавили только прилагательное «мультипроцессорный», то с мультипроцессорными мостами произошла метаморфоза - во многом по маркетинговым причинам они превратились в коммутаторы. Нужно отметить, что помимо процессоров портов коммутатор имеет центральный процессор, который координирует работу портов, отвечая за построение общей таблицы продвижения, а также поддерживая функции конфигурирования и управления коммутатором.

Со временем коммутаторы вытеснили из локальных сетей классические однопроцессорные мосты. Основная причина этого - существенно более высокая производительность, с которой коммутаторы передают кадры между сегментами сети. Если мосты могли даже замедлять работу сети, то коммутаторы всегда выпускаются с процессорами портов, способными передавать кадры с той максимальной скоростью, на которую рассчитан протокол. Ну а добавление к этому возможности параллельной передачи кадров между портами предопределило судьбу и мостов, и коммутаторов.

Производительность коммутаторов на несколько порядков выше, чем мостов - коммутаторы могут передавать до нескольких десятков, а иногда и сотен миллионов кадров в секунду, в то время как мосты обычно обрабатывали 3-5 тысяч кадров в секунду.

За время своего существования уже без конкурентов-мостов коммутаторы вобрали в себя многие дополнительные функции, родившиеся в результате естественного развития сетевых технологий. К этим функциям относятся, например, поддержка виртуальных сетей (VLAN), агрегирование линий связи, приоритезация трафика и т. п. Развитие технологии производства заказных микросхем также способствовало успеху коммутаторов, в результате процессоры портов сегодня обладают такой вычислительной мощностью, которая позволяет им быстро реализовывать весьма сложные алгоритмы обработки трафика, например выполнять его классификацию и профилирование.

Технология коммутации сегментов Ethernet была предложена небольшой компанией Kalpana в 1990 году в ответ на растущие потребности в повышении пропускной способности связей высокопроизводительных серверов с сегментами рабочих станций. У коммутатора компании Kalpana при свободном в момент приема кадра состоянии выходного порта задержка между получением первого байта кадра и появлением этого же байта на выходе порта адреса назначения составляла всего 40 мкс, что было гораздо ниже задержки кадра при его передаче мостом.

Структурная схема коммутатора EtherSwitch, предложенного фирмой Kalpana, представлена на рис. 1.

Рис. 1 Структура коммутатора EtherSwitch компании Kolpana

Каждый из 8 портов 10Base-T обслуживается одним процессором пакетов Ethernet (Ethernet Packet Processor, EPP). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров ЕРР, в частности ведет общую адресную таблицу коммутатора. Для передачи кадров между портами используется коммутационная матрица. Она функционирует по принципу коммутации каналов, соединяя порты коммутатора. Для 8 портов матрица может одновременно обеспечить 8 внутренних каналов при полудуплексном режиме работы портов и 16 - при дуплексном, когда передатчик и приемник каждого порта работают независимо друг от друга.

При поступлении кадра в какой-либо порт соответствующий процессор ЕРР буферизует несколько первых байтов кадра, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же приступает к обработке кадра, не дожидаясь прихода остальных его байтов.

1. Процессор ЕРР просматривает свой кэш адресной таблицы, и если не находит там нужного адреса, обращается к системному модулю, который работает в многозадачном режиме, параллельно обслуживая запросы всех процессоров ЕРР. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую тот буферизует в своем кэше для последующего использования.

2. Если адрес назначенля найден в адресной таблице и кадр нужно отфильтровать, процессор просто прекращает записывать в буфер байты кадра, очищает буфер и ждет поступления нового кадра.

3. Если же адрес найден и кадр нужно передать на другой порт, процессор, продолжая прием кадра в буфер, обращается к коммутационной матрице, пытаясь установить в ней путь, связывающий его порт с портом, через который идет маршрут к адресу назначения. Коммутационная матрица способна помочь только в том случае, если порт адреса назначения в этот момент свободен, то есть не соединен с другим портом данного коммутатора.

4. Если же порт занят, то, как и в любом устройстве с коммутацией каналов, матрица в соединении отказывает. В этом случае кадр полностью буферизуется процессором входного порта, после чего процессор ожидает освобождения выходного порта и образования коммутационной матрицей нужного пути.

5. После того как нужный путь установлен, в него направляются буферизованные байты кадра, которые принимаются процессором выходного порта. Как только процессор выходного порта получает доступ к подключенному к нему сегменту Ethernet по алгоритму CSMA/CD1, байты кадра сразу же начинают передаваться в сеть. Процессор входного порта постоянно хранит несколько байтов принимаемого кадра в своем буфере, что позволяет ему независимо и асинхронно принимать и передавать байты кадра (рис. 2).

Рис 2. Передача кадра через коммутационную матрицу

Описанный пособ передачи кадра без его полной буферизации получил название коммутации «на лету» (on-the-fly), или «напролет» (cut-through). Этот способ представляет собой, по сути, конвейерную обработку кадра, когда частично совмещаются во времени несколько этапов его передачи.

1. Прием первых байтов кадра процессором входного порта, включая прием байтов адреса назначения.

2. Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).

3. Коммутация матрицы.

4. Прием остальных байтов кадра процессором входного порта.

5. Прием байтов кадра (включая первые) процессором выходного порта через коммутационную матрицу.

6. Получение доступа к среде процессором выходного порта.

7. Передача байтов кадра процессором выходного порта в сеть.

На рис. 3 подставлены два режима обработки кадра: режим коммутации «на лету» с частичным совмещением во времени нескольких этапов и режим полной буферизации кадра с последовательным выполнением всех этапов. (Заметим, что этапы 2 и 3 совместить во времени нельзя, так как без знания номера выходного порта операция коммутации матрицы не имеет смысла.)

Рис. 3. Экономия времени при конвейерной обработке кадра: a - конвейерная обработка,
б - обычная обработка с полной буферизацией

Как показывает схема, экономия от конвейеризации получается ощутимой. Однако главной причиной повышения производительности сети при использовании коммутатора является параллельная обработка нескольких кадров.

Этот эффект иллюстрирует рис. 4, на котором показана идеальная в отношении производительности ситуация, когда четыре порта из восьми передают данные с максимальной для протокола Ethernet скоростью в 10 Мбит/с. Причем они передают эти данные на остальные четыре порта коммутатора не конфликтуя: потоки данных между узлами сети распределились так, что для каждого принимающего кадры порта есть свой выходной порт.

Если коммутатор успевает обрабатывать входной трафик при максимальной интенсивности поступления кадров на входные порты, то общая производительность коммутатора в приведенном примере составит 4 х 10 = 40 Мбит/с, а при обобщении примера для Депортов - (N/2) х 10 Мбит/с. В таком случае говорят, что коммутатор предоставляет каждой станции или сегменту, подключенному к его портам, выделенную пропускную способность протокола.

Рис. 4. Параллельная передача кадров коммутатором

Естественно, что в сети не всегда складывается описанная ситуация. Если двум станциям, например станциям, подключенным к портам 3 и 4, одновременно нужно записывать данные на один и тот же сервер, подключенный к порту 8, то коммутатор не сможет выделить каждой станции по 10 Мбит/с, так как порт 8 не в состоянии передавать данные со скоростью 20 Мбит/с. Кадры станций будут ожидать во внутренних очередях входных портов 3 и 4, когда освободится порт 8 для передачи очередного кадра. Очевидно, хорошим решением для такого распределения потоков данных было бы подключение сервера к более высокоскоростному порту, например Fast Ethernet или Gigabit Ethernet.

Коммутатором называют устройство, позволяющее коммутировать (включать или переключать) электрические сигналы. Аналоговый коммутатор предназначен для коммутации аналоговых, т. е. изменяющихся по амплитуде во времени сигналов.

Отмечу; что аналоговые коммутаторы с успехом можно применять и для коммутации цифровых сигналов.

Обычно состоянием «включено/выключено» аналогового коммутатора управляют подачей управляющего сигнала на управляющий вход. Для упрощения процесса коммутации для этих целей используют цифровые сигналы:

♦ логическая единица - ключ включен;

♦ логический ноль - выключен.

Чаще всего уровню логической единицы отвечает диапазон управляющих напряжений, лежащих в пределах от 2/3 до 1 от напряжения питания микросхемы коммутатора, уровню логического нуля - зона управляющих напряжений в пределах от 0 до 1/3 от напряжения питания. Вся промежуточная область диапазона управляющих напряжений (от 1/3 до 2/3 от величины напряжения питания) соответствует зоне неопределенности. Поскольку процесс переключения носит, хотя и неявно выраженный, пороговый характер, аналоговый коммутатор можно рассматривать по отношению к входу управления как простейший .

Основными характеристиками аналоговых коммутаторов являются:

К числу недостатков переключателя можно отнести то, что предель-

При включении генератора оба ключевых элемента микросхемы разомкнуты. С2 через R5 заряжается до напряжения, при котором ключ DA1.1 включается. На резистивный делитель R1-R3 подается напряжение питания; С1 заряжается через R4, R3 и часть потенциометра R2. Когда напряжение на его положительной обкладке достигнет напряжения включения ключа DA1.2, произойдет разряд обоих конденсаторов, и процесс их заряда- разряда будет периодически повторяться.

Для проверки исправности элементов световой индикации необходимо кратковременно нажать кнопку SA1 «Тест».

При работе на индуктивную нагрузку (электромагниты, обмотки и т. п.) для защиты выходных транзисторов микросхемы вывод 9 микросхемы следует подключить к шине питания, как показано на рис. 23.26.

Рис. 23.24. Структурная Рис. 23.26. включения микросхемы

микросхемы ULN2003A (ILN2003A) (JLN2003A при работе на индуктивную нагрузку

UDN2580A содержит 8 ключей (рис. 23.27). Она способна работать на активную и индуктивную нагрузку при напряжении питания 50 В и максимальном токе нагрузки до 500 мА.

Рис. 23.27. Цоколевка и эквивалентная микросхемы UDN2580A

UDN6118A (рис. 23.28) предназначена для 8-и канального ключевого управления активной нагрузкой при максимальном напряжении до 70(85) В при токе до 25(40) мА. Одна из областей применения этой микросхемы - согласование низковольтных логических уровней с высоковольтной нагрузкой, в частности, вакуумными флуоресцентными дисплеями. Входное напряжение, достаточное для включения нагрузки - от 2,4 до 15 В.

Совпадают с микросхемами UDN2580A по цоколевке, а по внутреннему строению с микросхемами UDN6118A другие микросхемы этой серии - UDN2981 - UDN2984.

Рис. 23.29. Строение и цоколевка микросхемы аналогового мультиплексора ADG408

Рис. 23.28. Цоколевка и эквивалентная микросхемы UDN6118А

Аналоговые мультиплексоры ADG408!ADG409 фирмы Analog Device можно отнести к управляемым цифровым кодом многоканальным электронным переключателям. Первый из мультиплексоров (ADG408) способен переключать единственный вход (выход) на 8 выходов (входов), рис. 23.29. Второй (ADG409) - переключает 2 входа (выхода) на 4 выхода (входа), рис. 23.30.

Максимальное замкнутого ключа не превышает 100 Ом и от напряжения питания микросхемы.

Микросхемы могут питаться от двух- или однополярного источника питания напряжением до ±25 В, соответственно, коммутируемые сигналы по знаку и амплитуде должны укладываться в эти диапазоны. Мультиплексоры отличаются малым потреблением тока - до 75 мкА. Предельная частота коммутируемых сигналов - 1 МГц.

Сопротивление нагрузки - не менее 4,7 кОм при ее емкости до 100 ηФ.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Подстанции - это наиболее распространённый тип электроустановок. Одновременно в энергосистемах сооружается или реконструируется их большое количество. Поэтому при проектировании в качестве важной задачи считают унификацию схемных и конструктивных решений в целях снижения затрат на сооружение и эксплуатацию подстанций. Их схемы на высшем (35 кВ и более) и низшем (6-10 кВ) напряжении имеют отличия. Рассмотрим их особенности.

Схемы высшего напряжения. Схемы коммутации подстанций зависят от структуры электрических сетей, в которых выделяют источники питания: шины электростанций, а также вторичные стороны подстанций более высокого напряжения. Кроме того, в схемах учитывается количество питающих и нагрузочных узлов, присоединений к узлу, их взаимное расположение и т.д.

Так, в распределительных сетях 110-220 кВ преимущественно применяются радиальные или радиально-узловые схемы (рис. 3.5). Радиальные схемы бывают с односторонним (рис. 3.5, а) или двусторонним (рис. 3.5, б-г) питанием и подключением подстанций по двум линиям. Так же применяются радиально-узловые схемы (рис. 3.5, д-е). В них хотя бы один нагрузочный узел подключен к сети более чем по двум линиям.

Рис. 3.5 Фрагменты топологических схем электрических сетей.

Рис.3.6. Схемы присоединения подстанций.

По способу присоединения к электрической сети различают тупиковые (рис. 3.6, а), ответвительные (рис. 3.6, б), проходные (рис. 3.6, в) и узловые (рис. 3.6, г) подстанции.

Тупиковые подстанции питаются по радиальным линиям.

Ответвительные подстанции присоединяются к проходящим линиям на ответвлении.

Проходные подстанции подключаются к сети заходом одной линии с двусторонним питанием.

Узловыми именуют подстанции, присоединяемые к сети по трем и более линиям электропередачи.

В основных сетях напряжением 500 кВ и выше применяются кольцевые схемы, так как распределительные и основные сети выполняют различные функции. В начальные этапы развития сети высшего напряжения были предназначены для максимального охвата обширных регионов электроснабжения в целях реализации межсистемного эффекта. Продолжительные нагрузки линий электропередачи были относительно невелики. При этом более предпочтительные технико-экономические показатели имели не радиальные, а кольцевые схемы. Сети 330 кВ занимают промежуточное положение, все более приобретая функции распределительных сетей.

Радиальные схемы сети позволяют максимально унифицировать схемы коммутации подстанций; каждая из них имеет четыре присоединения: две линии электропередачи и два автотрансформатора). В зависимости от конфигурации сети применяются упрощенные схемы. С учетом рис. 3.4 и 3.6 установим соответствие схемы присоединения подстанции ее схеме коммутации:

    тупиковые подстанции (рис. 3.6, а) - два блока (рис. 3.4, а или б), два блока с выключателями и неавтоматической перемычкой со стороны линий (рис. 3.4, в );

    ответвительные подстанции (рис. 3.6, б) - ответвления от проходящих линий (рис. 3.4, г, д), являющиеся комбинацией блочных схем;

- проходные подстанции (рис. 3.6, в) - мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий (рис. 3.4, е), мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов

В последней схеме, сохраняется режим секционирования сети при ремонте в ней любого выключателя. Схема на рис. 3.4, е таким важным с позиций надежности свойством не обладает. Однако отключение линии производится одним выключателем, в то время как в альтернативной схеме - двумя. Как известно, линейные выключатели наиболее часто подвергаются отказам.

Для узловых подстанций используются другие схемы (см. табл. 3.4), в которых применяется большее количество выключателей. Среди этих схем следует выделить схемы с двумя системами шин с обходной (рис. 3.7, а) и с одной секционированной системой шин с обходной (рис. 3.7, б).

В нормальном режиме схема с двумя системами шин с обходной имеет фиксированные присоединения. Они распределяются между системами шин по возможности симметрично; шиносоединительный выключатель нормально включен и секционирует электроустановку (рис. 3.7, в). Тот же вид в нормальном режиме имеет схема с одной секционированной системой шин с обходной (рис. 3.7, г).

При выводе из работы в схеме на рис. 3.7, а одной системы шин, все присоединения группируются на второй системе. Такой возможности в схеме на рис. 3.7, б нет.

Рис.3.7. К сравнению схем с двумя системами шин с обходной со схемой с одной секционированной системой шин с обходной

1 – 4 – присоединения.

Рис. 3.8. Фрагменты главных схем:

а - блок с разъединителем; б - то же, но с выключателем; в - два блока с выключателями и неавтоматической перемычкой со стороны линий; г - мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов; д - то же, но в цепях линий и ремонтной перемычкой со стороны линий; е - заход-выход

Рис. 3.8. Окончание.

Рис. 3.9. Фрагменты главных схем:

а - схема с одной секционированной системой шин с обходной; б - схема с двумя системами шин с обходной

Рис. 3.10. Фрагменты схем РУ:

а – четырехугольник; б – схема 3/2.

Рис. 3.11. Фрагменты схем РУ:

а – трансформатор – шины с подключением линий по схеме 3/2; б - трансформатор – шины.

На рис. 3.12 и 3.13 изображены фрагменты главных схем подстанций на стороне 6-10 кВ . При выборе понижающего трансформатора с расщепленными обмотками

Рис. 3.12. Фрагменты РУ на стороне НН с одинарными реакторами:

а – п/ст с постоянным оперативным током; б – п/ст с переменным оперативным током.

Рис. 3.13. Фрагменты РУ со сдвоенными реакторами на п/ст с постоянным оперативным током.

6-10 кВ количество секций будет так же равно четырем (как на рис. 3.13). Если в его цепях установить еще сдвоенные реакторы, то на двухтрансформаторной подстанции количество секций достигнет восьми.

При наличии на подстанции аккумуляторной батареи (т.е. при постоянном оперативном токе) трансформаторы СН 6-10/0,4 кВ подключаются к секциям 6- 10 кВ наряду с другими присоединениями (см. рис. 3.12, а). Если аккумуляторная батарея отсутствует, то на подстанции используется переменный или выпрямленный оперативный ток, и надежность электроснабжения СН повышают подключением трансформаторов СН до вводного выключателя (см. рис. 3.12, б). Конструктивно это более сложное решение. Оно требует дополнительных токопроводов наружной установки.

На рис. 3.14 приведён вариант ввода 6-10 кВ при оснащении подстанции линейными регулировочными трансформаторами. На рис. 3.15 даны схемы подключения источников реактивной мощности. Крупные синхронные компенсаторы устанавливают на мощных узловых подстанциях напряжением 500-750 кВ и подключают к третичным обмоткам понижающих автотрансформаторов. Синхронные компенсаторы небольшой мощности (до 15 Мвар) включаются в сеть прямым пуском. При мощности 50 Мвар и более используется реакторный пуск (рис. 3.15, а).

Рис. 3.14. Ввод на секцию с линейным регулировочным трансформатором.

Рис. 3.15. Подключение источников реактивной мощности:

а – синхронный компенсатор мощностью 50 – 100 МВАр; б – конденсаторной батареи 110 кВ; в - конденсаторной батареи 6 – 10 кВ.

Источниками реактивной мощности являются так же батареи шунтирующих конденсаторов. Они могут подключаться к шинам 110 кВ (рис. 3.15, б). Схема на рис. 3.15, б позволяет осуществлять форсировку мощности батареи шунтированием выключателем части последовательных рядов конденсаторов в фазе. В нулевых выводах батарей ставятся заградительные реакторы, ограничивающие броски тока при форсировке. На зажимах батареи устанавливаются измерительные трансформаторы напряжением 110 кВ, а на зажимах шунтируемой части - трансформаторы 35 кВ. Последние выполняют функции разрядных сопротивлений.

Схемы включения конденсаторных батарей 6-10 кВ разнообразны. На рис. 3.15, в дана схема регулируемой батареи. За счёт коммутации выключателями ее мощность ступенчато варьируется от 25 до 100 %.