Что такое узип в электрике. Устройство защиты от импульсных перенапряжений: применение и схема монтажа

Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на , либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники . Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН) . Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо , иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно класса III.

На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи - в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
Другой аспект применения УЗИП - обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.

Характеристики импульсов перенапряжения

Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада - для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
- первая - время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
- вторая - время (в микросекундах) спада импульса тока до 50% от максимального значения тока;

Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
1) Класс 0 (А) - внешняя грозозащита (в данном посте не рассматриваем);
2) Класс I (B) - защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
3) Класс II (C) - защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
3) Класс III (D) - защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование - если оно изготовлено в соответствии с ГОСТ);

Приборы защиты от импульсных перенапряжений

Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.
Разрядник
Разрядник - электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник - он переходит в исходное закрытое состояние до следующего импульса.


Основные характеристики разрядников:
1) Класс защиты (см. выше);
2) Номинальное рабочее напряжение - длительное, рекомендованное производителем рабочее напряжение разрядника;
3) Максимальное рабочее переменное напряжение - предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
4) Максимальный импульсный разрядный ток (10/350) мкс - максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс - номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения - максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
7) Время срабатывания - время открывания разрядника (практически для всех разрядников - менее 100 нс);
8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника - статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;

Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» - ведь мы заранее не знаем значение тока, который возникнет в сети...
При выборе разрядника можно руководствоваться следующими правилами:
1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током - от 50 кА до 100 кА и выше.
5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности - а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит - желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)

Варистор
Варистор - полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.


В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна - варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети

Небольшое видео натуралистических испытаний:) (подача на варистор диаметром 20 мм повышенного напряжения - превышение на 50 В)

Основные характеристики варисторов:
1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II (C), III (D);
2) Номинальное рабочее напряжение - длительное, рекомендованное производителем рабочее напряжение варистора;
3) Максимальное рабочее переменное напряжение - предельное длительное напряжение варистора, при котором он гарантированно не откроется;
4) Максимальный импульсный разрядный ток (8/20) мкс - максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс - номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения - максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
7) Время срабатывания - время открывания варистора (практически для всех варисторов - менее 25 нс);
8) (редко указываемый производителями параметр) классификационное напряжение варистора - статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора - практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.

Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
При выборе варисторной защиты можно руководствоваться следующими правилами:
1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact , который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 - 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока - так делать нельзя)
6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит - желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.

Краткий обзор производителей УЗИП
Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact ; Dehn ; OBO Bettermann ; CITEL ; Hakel . Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию - например модули TYCOTIU).
Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) - они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции - о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда

Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка - это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.

Теги:

  • грозозащита
  • УЗИП
  • защита от перенапряжения
Добавить метки

С каждым годом совершенствуется конструкция и технические параметры УЗИП , что приводит к снижению времени сервисного обслуживания и контроля этих устройств, а также к повышению их надежности. Однако нельзя полностью исключить повреждение и поломку этих устройств. Например, при сильной грозовой активности может произойти неоднократное попадание прямых ударов молний в защищаемый энергообъект (электрическую подстанцию) или на территорию вблизи него в течение одной грозы.

Применение УЗИП

Также следует учитывать то обстоятельство, что УЗИП, которые используются в слаботочных электросетях и в информационных сетях, с течением времени подвергаются старению, что означает постепенную потерю способностей по эффективному ограничению импульсных перенапряжений искусственного и естественного характера.

Процесс старения особенно быстро протекает при частых грозовых ударах значительной мощности, повторяющихся вна протяжении секунд или минут. При этом достигаются максимальные амплитуды импульсных токов, которые допустимы для УЗИП (Imax = 8/20 мкс и Iimp = 10/350 мкс).

Повреждение защитных устройств происходит из-за перегрева корпусных деталей при протекании сильных разрядных токов значительной интенсивности. Характер повреждений защитных устройств зависит от типа УЗИП .

  • В газонаполненных разрядниках с металлокерамическими корпусами происходит утечка газов и последующее разрушением корпуса прибора.
  • В УЗИП варисторного типа в результате теплового пробоя изменяется структура кристалла вплоть до его полного разрушения.
  • Защитные устройства, основанные на использовании открытых искровых промежутков, могут вызвать выброс перегретых газов и повреждение элементов элекрического шкафа.

В отдельных случаях отмечалась сильная деформация металлических частей распределительного шкафа, что можно сравнить с разрушениями от взрыва боевой гранаты. Поэтому при эксплуатации подобных УЗИП в электрических распределительных щитах требуется неукоснительное соблюдение мер противопожарной безопасности. Исходя из вышеуказанных причин, предприятия-изготовители УЗИП настоятельно рекомендуют проводить своевременный контроль защитных устройств на предмет сохранения работоспособности, в том числе после прохождения сильного грозового фронта. Для проверки устройств используются специальные тестеры, приспособленные для контроля и обслуживания защитных устройств от импульсного перенапряжения .

Визуальный осмотр или применение универсальной измерительной аппаратуры являются недостаточно эффективными мероприятиями для обнаружения многих неисправностей, так как:

  • Газонаполненный разрядник с металлокерамическим корпусом требует не только внешнего осмотра, но разборки корпуса для определения состояния внутренних частей. Но даже такая поверка не позволяет обнаружить потерю газового разряда. Поэтому для корректного контроля напряжения зажигания газонаполненного (грозового) разрядника следует использовать специальный тестер.
  • Варистор может иметь повреждения при отсутствии сигналов о выходе из строя устройства. При некорректной вольтамперной характеристике наблюдается утечка токов до 1 мА, что не всегда можно зафиксировать обычными тестерами. Для получения достоверных результатов производится измерение характеристики варистора как минимум в двух точках (при 0,010 мА и при 1 мА) с использованием источника тока с большим подъёмом напряжения (диапазон 1- 1,5 кВ).
  • Для проверки УЗИП с открытым искровым промежутком необходимо демонтировать данное устройство и провести контрольные измерения при помощи генератора импульсного тока с временем 10/350 мкс.

Современные устройства для защиты от импульсных перенапряжений работают на основе принципа выравнивания потенциалов между фазным (L) и рабочим (PEN или N) проводником. УЗИП всегда подключаются параллельно нагрузке. При выходе из строя защитного устройства (например, при пробое изоляции или при разрушении нелинейного элемента у газонаполненных разрядников и варисторов) или при потери работоспособности искровых разрядников (невозможность гашения импульсного тока) между проводниками возникает короткое замыкание, что чревато угрозой повреждения энергообъекта или возникновением пожара.

В действующих стандартах МЭК содержится два обязательных способа для защиты объектов с рабочим напряжением 220 и 380 В:

  • Защитные устройства теплового отключения (тепловая защита); используются в варисторах.
  • Быстродействующие предохранители для защиты всех типов УЗИП от токов короткого замыкания

В УЗИП варисторного типа предусмотрена тепловая защита, обеспечивающая работоспособность устройств при длительной эксплуатации. Однако, вследствие износа варистора, который связан с частыми воздействиями токов с большой амплитудой, происходит критическое разрушение P-N переходов в структуре защитного устройства. В результате снижается важнейший параметр варистора – максимальное допустимое рабочее напряжение Uc.

Данный параметр устанавливается в соответствии с фактическим напряжением в электрической сети и указывается предприятием-изготовителем варистора в его паспортных данных и на корпусе устройства. Например, на корпусе УЗИП варисторного типа указано значение наибольшего допустимого напряжения Uc = 300 В. Данное устройство будет нормально выполнять свои защитные фунции в сети с напряжением 220В даже при кратковременном увеличении напряжения до 300 В.

Достаточный запас по напряжению обеспечивает работоспособность варистора при скачках напряжения и позволяет эффективно рассеивать энергию при импульсных перенапряжениях. В процессе неизбежного «старения» защитного устройства реальное значение Uc заметно снижается и может оказаться ниже, чем номинальное напряжение в электрической сети объекта. В результате увеличения токов утечки через УЗИП, произойдёт перегрев и деформация корпуса защитного устройства, фазные клеммы могут проплавить пластиковый корпус и вызвать короткое замыкание на металлический профиль для крепления модульного оборудования (DIN-рейка).

Учитывая вышеизложенное, для должной защиты энергообъектов рекомендуется использовать варисторы, снабженные терморазмыкателем (тепловая защита). Данные устройства отличаются особой надёжностью в работе и очень простой конструкцией: контакт с пружиной припаян к одному из выводов УЗИП, связанному с охранно-пожарной сигнализацией. Отдельные устройства имеют контакты для подключения автономной сигнализации, предназначенной для подачи сигнала при неисправностиУЗИП.

При неполадках или повреждениях защитного устройства на пульт диспетчера или на вход автоматической системы по обработке и передаче данных поступает соответствующая информация (Рис. 1).

При длительном превышении фактического напряжения в электрической сети над наибольшим предельно допустимым длительным рабочим напряжением УЗИП (Uc) часто возникает аварийная ситуация. Например, подобное может случиться при обрыве или обгорании нулевого провода при входе в трансформатор (3-хфазная сеть с глухозаземлённой нейтралью). В этом случае к нагрузке прикладывается линейное напряжение, равное 380 Вольт. Как и положено, защитное устройство сработает пропуская через себя ток, по величине равный току короткого замыкания, достигающего сотен ампер.

Вследствие инертности конструкции тепловая защита реагирует с небольшим запозданием, которого вполне достаточно для полного разрушения варистора и сохранения режима КЗ через образовавшуюся дугу. Из-за расплавления корпуса защитного устройства возможно замыкание клемм УЗИП на DIN-рейку или на металлические части электрического шкафа. Данная ситуация возможна не только при использовании УЗИП варисторного типа, но на защитных устройствах с газовыми разрядниками, у которых отсутствует тепловая защита.

На рис. 2 продемонстрирован реальный случай, произошедший на одной из подстанций. Выход из строя УЗИП варисторного типа привёл к возгоранию в главном распределительном щите.

На рис. 3 показаны остатки от варистора, ставшего причиной возгорания в ГРЩ.

Для исключения подобных ситуаций следует устанавливать последовательно вместе с УЗИП тепловые предохранители, обладающие характеристиками срабатывания gG по ГОСТ Р 50339.0-92 (МЭК 60269-1-86) или gL по стандартам VDE 0636 (Германия). Большинство изготовителей УЗИП в каталогах продукции приводят технические требования, включающие номинальные значения и тип характеристики срабатывания тепловых предохранителей, предназначенных для дополнительной защиты от токов КЗ. Для этих целей применяются предохранители типа gG или gL, защищающие проводку и распределительные устройства от импульсных перегрузок и коротких замыканий.

Данный тип тепловых предохранителей отличается повышенной стойкостью к значительным токам импульсного перенапряжения и крайне малым временем срабатывания (в 10...100 раз быстрее, чем аналогичные автоматические выключатели). В ходе экспериментальных испытаний установлены и практикой подтверждены случаи повреждения автоматических выключателей или подгорания (приваривания) контактов вследствие длительного или частого воздействия импульсных перенапряжений. В результате автоматический выключатель выходит из строя и не может выполнять защитные функции.

Различные варианты применения тепловых предохранителей имеют свои особенности, которые необходимо брать в расчёт ещё на стадии проектирования электрощитовой продукции и схем электроснабжения энергообъектов. Например, если для защиты от КЗ будут применяться только вводные предохранители (общая защита), то при первом коротком замыкании в УЗИП любой ступени, будет отключен от питания весь объект или его часть.

Использование тепловых предохранителей, установленных последовательно с основным защитным устройством, гарантирует исключение подобной ситуации. Но при этом возникает вопрос подбора правильных предохранителей, с учётом очередности срабатывания каждого из них. Для решения этой проблемы следует прислушаться к рекомендациям предприятий-изготовителей УЗИП и применять предохранители таких типов и номиналов, которые предназначены для эксплуатации с конкретным защитным устройством.

На рис.4 продемонстрированы схемы установки предохранителей F7...F12 в TN-S сеть 220/380 В.

При использовании в рассматриваемой схеме разрядников HS55 в I ступени защиты и УЗИП варисторного типа (PIII280) во II ступени защиты (Рис. 4) применение предохранителей F7 ...F9 и F10...F12 зависит от номинального значения предохранителей F1...F3:

  • При значении F1...F3 свыше 315 А gG, значения F7...F9 соответствуют 315 А gG и и F10...F12 – 160 А gG.
  • При значении F1 ...F3 от 160 до 315 А gG, можно обойтись без предохранителей F7...F9. Предохранители F10...F12 равны 160 А gG.
  • При значении F1...F3 до 160 А gG, предохранители F7...F12 не требуются.

В отдельных случаях требуется, чтобы при возникновении в УЗИП короткого замыкания не срабатывал общий предохранитель, устанавливаемый на вводе трансформатора. Для этого в цепи каждого защитного устройства устанавливаются предохранители, которые выбираются с коэффициентом 1,6. Например, если общий предохранитель имеет номинальное значение 250 А gG, то предохранитель установленный последовательно с УЗИП должен быть номиналом в 160 А gG.

Использование автоматических выключателей для этой цели нецелесообразно: прежде всего из-за увеличенного времени срабатывания и недостаточной стойкости к импульсным перенапряжениям значительной величины и продолжительности.

Отдельные предприятия-изготовители защитных устройств предлагают УЗИП I и II класса модульного исполнения.

Конструкция подобных устройств включает базу, устанавливаемую на металлическую DIN-рейку, и сменный модульный элемент, оснащённый варистором или газовым разрядником с ножевыми контактами. На первый взгляд, подобная конструкция УЗИП, по сравнению с монолитным корпусом, кажется более удобной в эксплуатации и выгодной по стоимости. Однако подобная конструкция имеет ограничения по импульсным токам: Imax равняется 25 kA (для волны 8/20 мкс) и Iimp составляет не более 20 kA (для волны 10/350 мкс). Несмотря на это обстоятельтво, ряд производителей УЗИП показывают в рекламных проспектах максимальные разрядные способности защитных устройств, доходящие Imax до 100 kA (с формой импульса 8/20 мкс) и Iimp до 25 kA (форма импульса 10/350 мкс).

Однако фактические результаты испытаний расходятся с заявлениеми производителей. При ударе испытательного импульсного тока с подобной амплитудой возникают разрушения и пережоги ножевых контактов у сменного модуля и отмечаются повреждения контактов клемм в базе. На рис.5 представлены доказательства разрушительного воздействия испытательного импульса тока Imax равного 50 kA (форма импульса 8/20 мкс) на механическую часть УЗИП модульной конструкции.

После подобных воздействий импульсного тока будет крайне сложно извлечь вставной элемент из базы, так как возможно приваривание контактов друг к другу. Если вставку удастся благополучно вытащить из базы, последняя придёт в негодность: обгоревшие контакты увеличат переходное сопротивление, что повлечёт изменение уровня защиты данного УЗИП.

Рис.5

Для исключения подобных последствий УЗИП с модульной конструкцией следует применять только в тех случаях, когда возможные импульсные перенапряжения гарантированно не превысят предельно допустимых значений. Для достижения этого необходим корректный выбор типов и классов защитных устройств для конкретного энергообъекта и согласование технических параметров УЗИП между всеми ступенями защиты.

Среди вторичных источников питания чаще всего применяется выпрямитель. Укоренившаяся практика установки защитных устройств (варисторов, разрядников и др.) внутри блоков выпрямителя или непосредственно на платах не обеспечивает должную защиту оборудования подстанции. Как правило, подобные варисторы по своим параметрам относятся к III классу защиты, в соответствии с положениями ГОСТ Р 51992-2002 (МЭК 61643-1-98).

Данные устройства рассчитаны на токи порядка 7...10 кА с формой импульса 8/20 мкС. На многих предприятиях эксплуатирующих энергообъекты, данный тип защитных устройств считается вполне приемлемым и поэтому не принимаются другие меры по дополнительной защите технологического оборудования подстанции.

При отсутствии дополнительных внешних УЗИП более высокого класса и в случае длительных превышений номинального напряжения питающей электрической сети возможны следующие типовые аварийные ситуации:

  • При срабатывания варистора будут возникать токи значительной силы, которые пройдут через печатные платы и провода напрямую к заземляющей клемме, расположенной на стойке. Это как правило приводит к разрушению печатных проводников на платах и к появлению вторичных токов на незащищенных цепях, что в свою очередь выведет из строя электронные компоненты выпрямительного устройства.
  • Если импульсные токи превысят максимальное допустимое значение, установленное изготовителем для данной модели варистора, возможно возгорание или разрушение защитного устройства, что является серьезной угрозой для самого выпрямителя.
  • Иная ситуация наблюдается ели при действующее напряжение в электрической сети длительно превышает свое значение над максимально допустимым рабочим напряжением, установленным техническими условиями для данного типа варистора. В результате воздействия импульсного перенапряжения возникает вероятность обгорания печатных плат и внутренних проводов. При взрыве варистора возможны значительные механические повреждения выпрямителя.

На рис.6 показаны примеры поврежденных плат

Для решения проблем перечисленных в пункте I, наиболее оптимальным является вариант установки УЗИП, при котором защитные устройства располагаются в отдельном щитке или размещаются в стандартных силовых шкафах и распределительных электрощитах электроустановки энергообъекта. Использование дополнительных внешних УЗИП обеспечивает защиту выпрямителя от больших импульсных токов и позволяет соответственно уменьшить до предельно допустимого (7 ...10 кА) расчётные значения величин импульсных токов, проходящие через варисторные УЗИП, непосредственно встроенные в выпрямитель.

Для защиты оборудования подстанции от повышенного напряжения в сети (пункт II) рекомендуется применять устройства для контроля напряжения фазы или аналогичные приборы. На рис. 7 показана схема подключения устройства РКФ-3/1, предназначенного для контроля фаз.

Выбор конкретной схемы для защиты промышленного энергообъекта зависит от конфигурации оборудования, высоты антенно-мачтовых сооружений и типа ввода линий электропитания (подземный или воздушный). Для энергообъектов, имеющих высотные АМС или обладающих воздушным вводом линий электропитания с рабочим напряжением 220/380 В, применяют как минимум 2-х ступенчатые схемы для защиты от токов импульсного перенапряжения, в которых используются УЗИП I и II класса защиты (ГОСТ Р 51992-2002 (МЭК 61643-1-98) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах).

  • Для цепей L-N – 1-фазные грозовые разрядники, выдерживающие импульсные токи при прямом попадании молнии (10/350 мкс с амплитудным значением свыше 50 кА), с уровнем защиты (1Гр) более 4 кВ и способные автоматически гасить электрические дуги с токами не менее 4 кА.
  • Для цепей N-PE – грозовые разрядники, способные пропускать импульсные токи перенапряжения (10/350 мкс, с амплитудой до 120 кА), обеспечивающие минимальный уровень защиты (UP) не менее 2 кВ и способные гасить возникающие импульсные токи силой до 300 А. Данные разрядники не применяются в 4-х проводных схемах электропитания для сетей типа ТN-С.
  • В цепях L-N – 1-фазные (3-х фазные) защитные устройства варисторного типа, способные выдержать максимальный импульсный ток до 40 кА (8/20 мкс) с уровнем защиты (UP) более 1,5 кВ.
  • В цепях N-PE – грозовые разрядники II класса защиты, способные выдерживать наибольшие импульсные токи перенапряжения с амплитудой до 50 кА (8/20 мкс) и обладающие уровнем защиты (UP) от 1,5 кВ. В распределительных сетях ТN-С установка данных разрядников не обязательна.

Схемы включения УЗИП для защиты электропитающих сетей типа ТN-С-S и ТN-S приведены на Рис. 4 ...11. При монтаже защитных устройств следует выдерживать расстояние между смежными ступенями защиты (не менее десяти метров), измеренное по силовому электрическому кабелю. Данное требование является крайне важным – его соблюдение обеспечивает безотказную работу защитных устройств. При размещении защитных устройств I и II ступеней на меньшем расстоянии или при их расположении в одном и том же месте, следует установить дополнительное согласующее устройство (разделительный дроссель импульсного типа).

Для энергообъектов, использующих схему с подземным кабельным вводом электропитания, допустимо применение варисторных УЗИП комбинированного типа, которые по своим входным техническим параметрам полностью соответствуют требованиям к техническим устройствам II класса защиты (способность выдерживать импульсные токи до 25 кА с формой амплитуды 10/350 мкс). По выходным техническим параметрам (степень защиты UP (1 300...1 700 В), импульсный ток с формой амплитуды 8/20 мкс) они также должны подходить под требования для УЗИП II класса защиты. Использование данных защитных устройств позволяет полностью отказаться от применения разделительных дросселей.

Пример подобных УЗИП для энергообъекта, обладающего 2-мя подземными вводами электрического питания, привёден на Рис. 8. Отказ от схемы с использованием разделительных дросселей в пользу варисторных УЗИП позволяет получить экономию до 40%. Однако следует помнить, что при установке подобных защитных устройств на линии электропитания с воздушным вводом, нельзя исключать вероятность повреждения защитных устройств при прямом попадании грозового разряда в провода линии электропередач данного энергообъекта.

Требования к монтажу и установке УЗИП

При использовании защитных устройств в ЭПУ энергообъекта контейнерного типа, имеющего ограниченные габаритные характеристики, рекомендуется выполнить следующее:

  • Защитные устройства I класса (грозовые разрядники или комбинированные УЗИП варисторного типа) лучше всего устанавливать во вводном электрощитке, после вводного автоматического выключателя, но перед счетчиком для учёта электроэнергии, что обеспечивает надёжную защиту последнего.
  • Защитные устройства II класса также размещаются во вводном распределительном щитке непосредственно перед автоматическими выключателями (Рис.8, 9). В случае необходимости данные УЗИП монтируются на DIN-рейке выпрямительного устройства (Рис. 10, 11). Этот вариант подходит в том случае, когда устанавливается новый выпрямитель (при наличии УЗИП II класса защиты).
  • Для энергообъектов контейнерного типа во вводном распределительном щитке следует устанавливать импульсные разделительные дроссели, обладающие индуктивностью 15 мкГн. На входе в ЭПУ или на линии, где расположены дроссели, устанавливаются защитные устройства, предназначенных для защиты дросселей и проводников от токов перенапряжения и токов КЗ. На Рис. 8 ...11 показаны схемы, где используются распределительные дроссели и автоматические выключатели (32 А).
  • При использовании варисторных УЗИП комбинированного типа требования по их монтажу схожим с теми, которые предъявляются к грозовым разрядникам. Однако при этом можно не устанавливать разделительные дроссели и варисторные УЗИП II-го класса.

Рис.11. Подключение защитных устройств к сети ТК-8 с рабочим напряжением 220/380 В

В тех случаях, когда при использовании подобных УЗИП в действующей ЭПУ энергообъекта габаритные характеристики защитных устройств не являются главным критерием и когда нежелательны какие-либо изменения в монтажной схеме ЭПУ, следует устанавливать дополнительные электрощиты для защиты от импульсных токов перенапряжений (ЩЗИП) (Рис. 12...14).

Рис.12. Применение защитных устройств в 4-х проводной сети ТN-С (220/380 В) с 2-мя подземными вводами.

Рис.13. Применение защитных устройств в 4-х проводной сети ТN-С (220/380 В) с 2-мя воздушными вводами (с установкой разделительных дросселей)

Рис.14. Применение защитных устройств в 4-х проводной сети ТN-С (220/380 В) с 2-мя воздушными вводами (без использования в схеме разделительных дросселей)

Существуют схемы, где установлены дополнительные разделительные дроссели между I и II ступенями защиты. Следует заметить, что номинал разделительных дросселей подбирается с учётом максимального тока нагрузки, взятого отдельно для каждой фазы ЭПУ энергообъекта. Для установки на DIN-рейку в модельном ряду производителя предусмотрены разделительные дроссели с номиналом до 63 А. Защитные устройства, способные выдерживать большие токи (до 120 А), обладают значительными габаритными размерами, что может вызвать трудности при их монтаже в распределительные щиты небольших размеров.

Поэтому, при больших габаритах энергообъекта и значительных рабочих токах, имеет практический смысл не использовать разделительные дроссели и устанавливать УЗИП различных ступеней защиты на расстоянии не менее десяти метров в различных распредщитах. Но если разделительные дроссели входят в схему защиты энергообъекта, на вводе в ЭПУ или на той силовой линии, где размещены дроссели, следует устанавливать устройства для защиты дросселей и электрических кабелей от токов импульсного перенапряжения и токов КЗ. В этом случае использование предохранителей, подключенных последовательно с каждым устройством для защиты от токов импульсного перенапряжения, технически нецелесообразно.

Так как номиналы предохранителей, предусмотренные изготовителем защитных устройств, превышают номинальные значения разделительных дросселей (при максимальном токе до 120 А). При отсутствии в схеме защиты необходимых дросселей (Рис. 8 и 10), следует обеспечить защиту ЭПУ от аварийных режимов КЗ в устройствах защиты от импульсного перенапряжения за счёт последовательного подключения предохранителей, номинал которых должен соответствовать ТУ производителя данных устройств. При более низком номинальном значении устройств для защиты от максимальных токов импульсного перенапряжения (защитных автоматических выключателей или предохранителей), установленных перед местом подключения УЗИП, допускается монтаж вышеприведённой схемы без предохранителей.

Важнейшие технические параметры защитных устройств, использованных в вышеприведённых схемах (Рис. 8...14), приведены в Таблице 1.

Таблица 1.

Примечания к таблице 1:

  • Указаны только крайние позиции среди устройств серии 5РС
  • Представлены только 1-фазные устройства серии 8РС

Для эффективной защиты оборудования энергообъекта по вторичному питанию в каждую цепь устанавливаются соответствующие УЗИП (48 В или 60 В). Количество защитных устройств и места их расположения выбираются с учетом конкретного типа электрооборудования и условий прокладки трасс для шин вторичного питания по энергообъекту. На Рис. 11 варисторный УЗИП мод. РIII-60 размещён на DIN-рейке выпрямительного устройства. Последовательно с УЗИП подключен предохранитель 63 АgG, предназначенный для защиты выхода 48 VDC выпрямительного устройства в случае возникновения КЗ в варисторе.

Рис.15. Схема защиты электропитающих установок объекта контейнерного типа по цепям постоянного тока со стороны линий огней системы светового ограждения.

Также на Рис. 15 показана схема защиты ЭПУ энергообъекта контейнерного типа со стороны электропитания и от заноса перенапряжения от линии питания с рабочим напряжением 220 В огней светового ограждения (СОМ), размещённых на антенно-мачтовом сооружении.

УЗИП (Уcтройства защиты от импульсных перенапряжений и помех) электрооборудования низковольтных силовых распределительных сетей до 1000 В предназначены для защиты от импульсных перенапряжений источниками которых являются:

  • прямые удары молнии (ПУМ) в систему молниезащиты объекта или воздушную линию электропередач в непосредственной близости перед вводом в объект;
  • межоблачные разряды или удары молнии в радиусе до нескольких километров вблизи от объектов и коммуникаций входящих и выходящих из объекта;
  • коммутации индуктивных и емкостных нагрузок, короткие замыкания в распределительных электрических сетях высокого и низкого напряжения;
  • электромагнитные помехи, создаваемые промышленными электроустановками и электронными приборами.

УЗИП – это защитное устройство от импульсных перенапряжений, предназначенное для установки как в городских квартирах, так и в частных домах. Оно обладает рядом неоспоримых достоинств: эффективностью, технической совершенностью и доступной стоимостью.

Эти три фактора делают УЗИП незаменимым оснащением для каждого дома и квартиры.

Кому нужны устройства защиты? Современные квартиры и офисы оборудуются большим количеством энергопотребляющей техники. Её совокупная стоимость обычно исчисляется десятками тысяч вложенных рублей. Поскупившись на покупку недорогих защитных устройств и надеясь на извечное русское «авось», вы рискуете потерять всё сразу: и компьютер, и плазменную панель, и стиральную машину, и электроплиту и всё то, что питается электроэнергией. Ведь достаточно всего одного скачка напряжения – и пиши пропало. Особенно остро вопрос безопасности стоит в загородных домах, оборудованных автономными системами электро- и водоснабжения, отопления, пожаротушения, видеонаблюдения и т.д. Только представьте, какие затраты вас подстерегают из-за беспечного отношения к электричеству! Что уж говорить о модных ныне системах «Умный дом», где всё завязано именно на стабильной работе электрической сети. Отнеситесь к собственной безопасности со всей аккуратностью. Ведь вы же не хотите понести колоссальные потери из-за какого-то каприза электричества?

Ограничитель перенапряжения предназначены для защиты от импульсных перенапряжение в результате грозовых разрядов или работой устройств с большой индуктивной нагрузкой (высоковольтные трансформаторы, большие электродвигатели с короткозамкнутым ротором)

Принцип действия ограничителя (УЗИП) основан на способности материала варистора при многократном увеличении напряжения пропускать электрический ток. Материал варистора утрачивает свои свойства, после нескольких разрядов. В большинстве серий УЗИП имеется возможность визуально проверить работоспособность варистора в индикаторном окне. В конструкцию ограничителя зачастую включен предохранитель для защиты от сверхтоков

Основные типы/классы УЗИП

Тип 1, класс В - используются при возможности непосредственного удара молний в линию электропередач или в землю в непосредственной близости от места установки.Остаточное импулсное перенапряжение на выходе 4-2,5 кВ.Очень рекомендуется при воздушном вводе, а при наличии молниеотвода установка обязательна. Устанавливается в специальном железном ящике вблизи ввода в здание или в вводно распределительном устройстве (ВРУ), или главном распределительном щите (ГРЩ).

Тип 2, класс С - используются в местах, в которых отсутствует угроза прямого удара молнии в непосредственной близости от места установки. По сравнению с Тип 1 имеют меньшую способность к защите от импульсных перенапряжений, рекомендуется устанавливать на вводе электроустановок и вводе в жилые помещения в качестве второго уровня защиты.Остаточное импулсное перенапряжение на выходе 2,5-1,5 кВ.Устанавливаются в распределительные щиты.

Тип 3, класс D - защита оборудования от остаточных токов перенапряжения, защита от несеметричных дифференциальных токов, защиты от высокочастотных помех, располагается в конечных распределительных щитах или, что лучше, не посредственно возле электроприборов. .Остаточное импулсное перенапряжение на выходе 1,5-0,8 кВ.Желательно чтоб от приборов находилось на растоянии не более 5 метров, а при наличии молниеотвода как можно ближе к электроприборам, так как ток в спусках молниеприемников расположеных снаружи здания индуцирует импульс перенапряжения в электропроводке.

При выборе защитных устройств на разрядниках или оксидно-цинковых варисторах необходимо обращать внимание на следующие параметры:

Номинальное рабочее напряжение Un - это номинальное действующее напряжение сети, для работы в которой предназначено защитное устройство.

Наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc - это наибольшее действующее значение напряжения переменного тока, которое может быть длительно (в течение всего срока службы) приложено к выводам защитного устройства.

Согласно ГОСТ и моей логике максимальное долговременное напряжение которое должен выдерживать УЗИП должно равнятся номинальному напряжению умноженному на кооифициент 1,6 для 220 вольт и 1,1 для 380 вольт и соответственно должно составлять 352 и 418 вольт. Это нужно для того чтоб в случае перенапряжений или обрыва нейтрали УЗИП не вышел из строя из-за срабатывания встроенной тепловой защиты или внешнего плавкого предохранителя.

У УЗИП с более высоким Uc соответственно выше остаточное напряжение на выходе Up, например у УЗИП с Uc 275 вольт остаточное напряжение составляет 1,5 кВ, а с Uc 385 вольт 1,9 кВ. Но если правильно сделать монтаж с Uc 385 вольт, то степень ограничения может получится даже лучше чем с неправильным монтажом при использовании УЗИП с Uc 275 вольт, но самое главное будет безопасно при временном перенапряжении.

Классификационное напряжение (параметр для варисторных УЗИП) - это действующее значение напряжения промышленной частоты, которое прикладывается к варисторному УЗИП для получения классификационного тока (обычно значение классификационного тока принимается равным 1,0 мА).

Импульсный ток Iimp - этот ток определяется пиковым значением Ipeak испытательного импульса и зарядом Q. Применяется для испытаний УЗИП класса I. Как правило, используется волна с формой 10/350 мкс.

Номинальный импульсный разрядный ток In - это пиковое значение испытательного импульса тока формы 8/20 мкс, проходящего через защитное устройство. Ток данной величины защитное устройство может выдерживать многократно. Используется для испытания УЗИП класса II. При воздействии данного импульса определяется уровень защиты УЗИП. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Максимальный импульсный разрядный ток Imax - это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

Сопровождающий ток If (параметр для УЗИП на базе разрядников) - это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т.е. электроэнергетической системой. Фактически значение этого тока стремится к расчётному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). Поэтому для установки в цепи «L-N; L-PE» нельзя применять газонаполненные (и другие) разрядники со значением If равным 100...400А. В результате длительного воздействия сопровождающего тока они будут повреждены и могут вызвать пожар. Для установки в данную цепь необходимо применять разрядники со значением If, превышающим расчётный ток короткого замыкания, т.е. желательно величиной от 2...3 кА и выше.

В системе ТТ при воздушном вводе нейтральный провод на вводе повторно не заземляется, во время грозы возможен обрыв нейтального провода и перехлестывание его фазным, в следствии чего возможно не контролируемое КЗ в цепи разрядника N-PE, If которого обычно равен 100...400А, если сопротивление заземления будет меньше 2,5 Ом. В подавляющем числе случаев реально токого быть не должно так как наврядли на практике получится что сумарное сопротивление заземления подстанции и местного заземления будет меньше 2,5 Ом. Это так для информации, чтоб имели ввиду.

Уровень защиты Up - это максимальное значение падения напряжения на УЗИП при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока In.

Время срабатывания. Для оксидно-цинковых варисторов его значение обычно не превышает 25 нс. Для разрядников разной конструкции время срабатывания может находиться в пределах от 100 наносекунд до нескольких микросекунд.

Существует ряд других параметров, которые тоже учитываются при выборе УЗИП: ток утечки (для варисторов), максимальная энергия, выделяемая на варисторе, ток срабатывания предохранителей (для защитных устройств со встроенными предохранителями).

Для правильной и согласованной работы УЗИП разных ступеней длина проводников между ними должна быть не меньше определенной длины для обеспечения необходимой временной задержки в нарастании импульса перенапряжения на следующей ступени защиты. Благодаря этой задержке более мощная ступень УЗИП успевает сработать, чем защищает от перегрузки следующую, более низковолтную ступень УЗИП.

Расстояние проводников между УЗИП на разрядниках и следующего за ним УЗИП на варисторах должно быть не менее 10 метров. Расстояние проводников между УЗИП на варисторах и следующего за ним УЗИП на варисторах следующей ступени должно быть не менее 5 метров. Расстояние проводников между одинаковыми по характеристикам УЗИП на варисторах одной ступени должно быть не менее 1 метра.

Если длина проводников между УЗИП меньше требуемой, устанавливают индуктивности для компенсации недостающей длины проводника из расчета 0,5-1 мкГ/м, в зависимости от сечения провода, если фазовые и защитные провода находятся в одном кабеле. Если провода проложены отдельно, то величина индуктивности будет большей. В продаже есть готовые индуктивности эквивалентные 6-15 метрам.

Если от УЗИП до защищаемых электроприборов более 10 метров, например если последняя ступень установлена в щите, желательно установить повторный УЗИП вблизи защищаемых электроприборов, а если расстояние более 30 метров то установка повторного УЗИП вблизи защищаемых электроприборов обязательна.

Каждую ступень УЗИП к заземляющему устройству (ЗУ) нужно стремится подключать отдельным проводником. Такое подключение позволяет свести к минимуму бросок потенциала на корпусах электроприборов в результате срабатывания устройств защиты от импульсного перенапряжения, хотя для приборов лучше чтоб УЗИП подключалось к шине заземления щита где установлен УЗИП, но защита человека главней.

Зонная концепция защиты.

Международной Электротехнической Комиссией (МЭК) разработаны стандарты, которые формируют «зонную концепцию защиты», одним из основных принципов является деление объекта на условные защитные зоны с точки зрения прямого и непрямого воздействия молнии.

Зона 0А - зона внешней среды объекта, все точки которой могут подвергаться воздействию прямого удара молнии (иметь непосредственный контакт с каналом молнии) и возникающего при этом электромагнитного поля.

Зона 0В - зона внешней среды объекта, точки которой не подвергаются воздействию прямого удара молнии, т.к. находятся в пространстве, защищенном системой внешней молниезащиты. Однако в данной зоне имеется воздействие неослабленного электромагнитного поля.

Зона 1 - внутренняя зона объекта, точки которой не подвергаются воздействию прямого удара молнии. В этой зоне во всех токопроводящих частях имеют значительно меньшее значение по сравнению с зонами 0А и 0В. Электромагнитное поле также снижено по сравнению с зонами 0А и 0В за счёт экранирующих свойств строительных конструкций.

Последующие зоны (Зона 2 и т.д.). Если требуется дальнейшее снижение разрядных токов или электромагнитного поля в местах размещения чувствительного оборудования, то необходимо проектировать так называемые последующие зоны. Критерий для этих зон определяется соответственно общими требованиями по ограничению внешних воздействий, влияющих на защищаемую систему. Имеет место общее правило, по которому с увеличением номера защитной зоны уменьшаются влияние электромагнитного поля и грозового тока. На границах раздела отдельных зон необходимо обеспечить защитное последовательное соединение всех металлических частей, с обеспечением их периодического контроля.

Особенности монтажа УЗИП в щитах -

Молниезащита и громоотвод - нажмите на ссылку для ознакомления.

В современном доме находится немалое количество бытовой техники, приборов и электроники. При этом большинство частных домов получают энергию с помощью воздушной линии электропередачи (ЛЭП). В такой ситуации имеет смысл устройство защиты от импульсных перенапряжений, возникающих в сети при ударах молнии.

Ужасно выглядит удар молнии в дом

Причины возникновения и характер импульсов перенапряжения

Многие пожилые люди, покидая свое жилище на продолжительный срок, по старинке вынимают из розеток шнуры всех электроприборов, опасаясь молнии. В настоящее время линии электропередач относительно защищены от атмосферных воздействий, а в бытовой электронике имеется элементарная защита от импульсов напряжением до нескольких тысяч вольт.

Таким образом, в многоквартирном доме, к которому электроснабжение подается подземным кабелем, проблема защиты от грозы в значительной степени решена.

В случае энергоснабжения по воздуху необходимо принимать комплексные меры по защите от удара молнии.

Негативное воздействие атмосферного электричества может возникать:

  • при ударе молнии непосредственно в линию электропередачи рядом с домом, что приводит к возникновению импульса 10/350мкс (первое значение – время роста импульса, второе – время спада);
  • при попадании молнии в ЛЭП на дальнем расстоянии и образовании волны с характеристикой 8/20мкс;
  • при грозовом разряде в непосредственной близости и наведении на линию электропередачи электромагнитного импульса.

Варианты схем удара молнии

Классификация защиты от импульсов перенапряжения


Знакомые всем искровые разрядники

Заметим, что высоковольтные импульсы в сети могут также возникать в результате аварии на электрической подстанции или обрыва нулевого провода в трехфазной сети. В результате перечисленных воздействий отказывает бытовая техника, а также электрические коммутационные приборы. Если изоляция проводки в доме будет пробита, произойдет короткое замыкание, возгорание и пожар.


Вентильные разрядники на электрической подстанции

Основу ограничителя перенапряжения составляет варистор, то есть резистор, сопротивление которого меняется в зависимости от приложенного напряжения. ОПН более надежны, имеют меньшие размеры. В конкретной ситуации имеется возможность установить ограничители импульсного перенапряжения с наиболее подходящей характеристикой.

В низковольтных сетях, которые обеспечивают питание жилых домов, используют устройства защиты от импульсных перенапряжений (УЗИП). Эти малогабаритные приборы модульного типа делятся на три класса и могут быть применены владельцами жилья в собственных домах и квартирах.


Модульные УЗИП для монтажа в электрощите

Устройства I класса устанавливаются на вводном щите жилого дома. Они предназначены для защиты от близких ударов молнии (до 1,5км) и пропускают через себя токи от 25 до 100 тысяч ампер с характеристикой импульса 10/350мкс. УЗИП II класса монтируются в распределительном щите в качестве второй ступени защиты от удара молнии и пропускают через себя токи 10-40 тысяч ампер с характеристикой импульса 8/20мкс.

Устройства III класса гасят импульсы с характеристикой 8/20мкс и рассчитаны на токи до 10 кА. Они устанавливаются непосредственно у электроприборов. По конструктивному исполнению УЗИП III класса могут изготавливаться в виде модулей и монтироваться на din-рейку, а также встраиваться в розетку или в вилку потребителя энергии.

Нужна ли установка УЗИП в Вашем случае?


Стандартная электрическая схема подключения УЗИП в трехфазной сети

Классическая схема подключения УЗИП предусматривает последовательную установку устройств всех трех классов. Если ограничиться только устройством класса I, то оно может не сработать при относительно слабых импульсах. Наоборот, самое чувствительное УЗИП класса III не выполнит свою задачу при мощном воздействии.

Существуют стандарты и методики для расчета степени риска удара молнии и оценки последствий. В общем виде УЗИП класса I можно не устанавливать, если опоры линии электропередачи имеют заземление, заземлен нулевой провод, установлен громоотвод, и реализована система выравнивания потенциалов.

Однако, не обладая специальными знаниями в области электроснабжения, куда проще обеспечить стандартную схему защиты от импульсных скачков напряжения.

При этом в любом случае отрицательное воздействие грозового разряда сильно снижается при установке громоотвода. Если Вы этого еще не сделали, читайте статью

Как работают различные виды УЗИП

Устройства защиты от импульсных перенапряжений используют в своей конструкции разрядники или полупроводниковые приборы – варисторы. Последние нагреваются при срабатывании и плохо работают при повторении высоковольтных воздействий. Варистор должен остыть, чтобы вернуться в рабочее состояние. УЗИП модульного типа часто имеют индикаторы работоспособности и могут быть заменены при выходе из строя.


Электрическая схема работы УЗИП

При нормальном напряжении в сети ток проходит по проводникам к нагрузке. Во время скачка напряжения разрядник открывается и пропускает ток на землю. После возвращения напряжения в сети к рабочим значениям, элементы УЗИП снова закрываются, и электроснабжение протекает в обычном режиме.

Во время срабатывания устройства защиты через него протекает ток до десятков тысяч ампер. При этом выделяется большое количество энергии, то есть тепла.

Устройство защиты от импульсных скачков напряжения своими руками


Пример монтажа УЗИП в электрощите

Защита от грозовых перенапряжений может быть выполнена своими руками. УЗИП модульного типа устанавливают в вводном щите с корпусом из металла. При этом следует применять устройство, номинальный рабочий ток которого не меньше величины, ограниченной входным автоматом. Также напряжение ограничения УЗИП не должно быть ниже допустимого в Вашей сети.

УЗИП класса I подключается после входного автомата в однофазной или трехфазной сети. Сверху к устройству подводятся защищаемые линии электроснабжения, снизу – заземление. Ниже приводится вариант электромонтажной схемы подключения УЗИП класса I в однофазной сети.


Электромонтажная схема подключения УЗИП в однофазной сети

УЗИП класса II монтируется в распределительном щите внутри дома. Устройство защиты третьего класса устанавливается непосредственно у потребителей. Если ступени устройства защиты находятся рядом, между ними необходимо включать дроссели для согласования. В противном случае УЗИП с большей чувствительностью примет весь ток нагрузки на себя. Если расстояние между приборами защиты более 10м, роль дросселей выполнит электропроводка.

Тема выбора и подключения устройств защиты от грозовых перенапряжений не является простой для неспециалистов. В любом случае оставшиеся вопросы можно разрешить при помощи видеоролика.