Найти определитель матрицы n го порядка. Перестановки и подстановки

Рассматривая развернутое выражение для определителей

замечаем, что в каждое слагаемое входят в качестве сомножителей по одному элементу из каждой строки и по одному из каждого столбца определителя, причем всевозможные произведения этого вида входят в состав определителя со знаком плюс или минус. Это свойство полагается в основу обобщения понятия определителя на квадратные матрицы любого порядка. Именно: определителем квадратной матрицы порядка или, короче, определителем порядка называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки и по одному из каждого столбца, причем полученные произведения снабжены знаками плюс и минус по некоторому вполне определенному правилу. Это правило вводится

довольно сложным образом, и мы не будем останавливаться на его формулировке. Существенно отметить, что оно устанавливается так, что обеспечивается следующее важнейшее основное свойство определителя:

1. При перестановке двух строк определитель меняет знак на противоположный.

Для определителя 2 и 3-го порядков это свойство легко проверяется непосредственным вычислением. В общем случае оно доказывается на основе не сформулированного нами здесь правила знаков.

Определители обладают целым рядом других замечательных свойств, которые дают возможность с успехом использовать определители в разнообразных теоретических и численных расчетах, несмотря на чрезвычайную громоздкость определителя: ведь определитель n-го порядка содержит, как нетрудно видеть, слагаемых, каждое слагаемое состоит из сомножителей и слагаемые снабжены знаками по некоторому сложному правилу.

Переходим к перечислению основных свойств определителей, не останавливаясь на их подробных доказательствах.

Первое из этих свойств уже сформулировано выше.

2. Определитель не меняется при транспонировании его матрицы, т. е. при замене строк на столбцы с сохранением порядка.

Доказательство основано на подробном исследовании правила расстановки знаков в слагаемых определителя. Это свойство дает возможность всякое утверждение, касающееся строк определителя, перенести на столбцы.

3. Определитель есть линейная функция от элементов какой-либо его строки (или столбца). Подробнее

где представляют собой выражения, не зависящие от элементов строки.

Это свойство с очевидностью следует из того, что каждое слагаемое содержит по одному и только одному сомножителю из каждой, в частности строки.

Равенство (5) называется разложением определителя по элементам строки, а коэффициенты называются алгебраическими дополнениями элементов в определителе.

4. Алгебраическое дополнение элемента равно, с точностью до знака, так называемому минору определителя, т. е. определителю

долю порядка, получающемуся из данного посредством вычеркивания строки и столбца. Для получения алгебраического дополнения минор нужно взять со знаком . Свойства 3 и 4 сводят вычисление определителя порядка к вычислению определителей порядка

Из перечисленных основных свойств вытекает ряд интересных свойств определителей. Перечислим некоторые на них.

5. Определитель с двумя одинаковыми строками равен пулю.

Действительно, если определитель имеет две одинаковые строки, то при их перестановке определитель не изменяется, ибо строки одинаковые, но вместе с тем он, в силу первого свойства, меняет знак на обратный. Следовательно, он равен нулю.

Сумма произведений элементов какой-либо строки на алгебраические дополнения другой строки равна нулю.

Действительно, такай сумма является результатом разложения определителя с двумя одинаковыми строками по одной из них.

Общий множитель элементов какой-либо строки можно вынести за знак определителя.

Это следует из свойства 3.

8. Определитель с двумя пропорциональными строками равен нулю.

Достаточно вынести множитель пропорциональности, и мы получим определитель с двумя равными строками.

9. Определитель не меняется, если к элементам какой-либо строки добавить числа, пропорциональные элементам другой строки.

Действительно, в силу свойства 3 преобразованный определитель: равен сумме исходного определителя определителя с двумя пропорциональными строками, который равен нулю.

Последнее свойство дает хорошее средство для вычисления определителей. Используя это свойство можно, не менян величины определителя, преобразовать его матрицу так, чтобы в какой-либо строке (или столбце) все элементы, кроме одного, оказались равными нулю. Затем, разложив определитель но элементам этой строки (столбца), мы сведем вычисление определителя порядка к вычислению одного определителя порядка именно, алгебраического дополнения единственного отличного от нуля элемента выбранной строки.

Рассмотрим квадратную матрицу второго порядка

Определение . Определителем квадратной матрицы второго порядка называют число, равное a 11 a 22 -a 12 a 21 и обозначают символом , то есть

Определитель матрицы называется также детерминантом . Обозначения определителя матрицы A : |A |, Δ, det A , det(a ij) .

Теперь рассмотрим квадратную матрицу третьего порядка

При вычислении определителя третьего порядка полезно знать правило треугольника: со знаком плюс идут произведения троек чисел, расположенных на главной диагонали матрицы, и в вершинах треугольников с основанием параллельным этой диагонали и вершиной в противоположого угла матрицы. Со знаком минус идут тройки из второй диагонали и из треугольноков, построенных относительно этой диагонали. Следующая схема демонстрирует это правило. В схеме синим (слева) отмечены элементы, чьи произведения идут со знаком плюс, а красным (справа) - со знаком минус.

Теперь дадим определение.

Определение . Определителем квадратной матрицы третьего порядка называют число

Определение . Минором какого-либо элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, к которым принадлежит данный элемент. Минор элемента a ik обозначим M ik .

Определение . Минор элемента a 21 определителя третьего порядка матрицы является определитель второго порядка

Определение a ik определителя называется его минор, взятый со знаком (-1) i+k .

Алгебраическое дополнение элемента a ik обозначим A ik . По определению

Правило для определения знака алгебраического дополнения (на примере определителя третьего порядка):

Пример . Алгебраическим дополнением элемента a 21 является

Теорема разложения . Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Свойства определителей

  • Определитель не изменится при замене всех его строк соответствующими столбцами.
  • При перестановке двух столбцов (строк) определитель меняет знак.
  • Определитель с двумя одинаковыми столбцами (строками) равен нулю.
  • Множитель, общий для элементов некоторого столбца (строки), можно выносить за знак определителя.
  • Определитель с двумя пропорциональными столбцами (строками) равен нулю.
  • Определитель равен нулю, если все элементы некоторого столбца (строки) равны нулю.
  • Определитель не изменится, если к элементам некоторого столбца (строки) прибавить соответствующие элементы другого столбца (строки), предварительно умножив их на один и тот же множитель.

Замечание . Если в определителе все элементы некоторого столбца (строки) равны суммам двух слагаемых, то такой определитель равен сумме двух соответствующих определителей.

Например,

Определители n -го порядка

Рассмотрим квадратную матрицу n -го порядка

Понятие определителя этой матрицы или определителя n -го порядка вводится индуктивно, считая, что уже введено понятие определителя порядка n-1 , соответствующего квадратной матрице (n-1) -го порядка.

Определение минора элемента матрицы и его алгебраического дополнения верны для определителей любого порядка.

Определение . Определителем порядка n , соответствующим матрице A n -го порядка, называют число, равное (M 1k - минор элемента a 1k ) и обозначаемое одним из символов

Итак, по определению

Эта формула выражает правило составления определителя порядка n по элементам первой строки соответствующей ему матрицы и по алгебраическим дополнениям этих элементов, являющимся определителем порядка n-1 , взятыми с надлежащими знаками.

Для определителя любого порядка верны все свойства и теоремы, полученные и доказанные для определителя третьего порядка.

Сформулируем основную теорему:

Теорема [Теорема замещения] . Каков бы ни был номер строки i (i=1,2,…,n ), для определителя n -го порядка справедлива формула

называемая разложением этого определителя по i -й строке.

Поскольку верно свойство 1 определителей, то определитель также можем разложить и по столбцу:

Примеры

Вычислим следующий определитель:

Вычтем вторую строку из первой и третьей. После прибавим к третей первую и из третей вынесем общий множитель:

Теперь ко второй строке прибавим третью, умноженную на 7, и к четвертой прибавим третью, умноженную на 2. После вынесем общий множитель из четвертой строки:

Разложим определитель по второму столбцу (знаки указывают значение (-1) i+j при миноре). Заметим, что в столбце только один ненулевой элемент, следовательно, в разложении останется только один определитель третьего порядка. Окончательно пулучаем ответ использую формулу для определителя третьего порядка.

Приведем еще несколько примеров для определителей различных порядков.

Методы вычисления определителей n – го порядка 1. Метод приведения к треугольному виду Этот метод заключается в преобразовании определителя к такому виду, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю. Пример 1. Вычислить определитель порядка n d= 01 01 01 01 11110 xxx xxx xxx xxx . Решение. Прибавим первую строку, умноженную на (– x) ко всем остальным: d= x x x x − − − − 0001 0001 0001 0001 11110 . К первому столбцу прибавим все последующие столбцы, умноженные на (1/x). Получим d= . 0000 0000 0000 0000 1111)1(x x x x x n − − − − − Мы получили треугольный вид, следовательно, определитель равен произведению элементов главной диагонали d=(– 1) n – 1 (n – 1)x n – 2 . Пример 2. Вычислить определитель 2221 2212 2122 1222 − − − − =d . Решение. Прибавим к первой строке все остальные, тогда в первой строке все элементы будут равны 2(n – 1) – 1=2n – 3 и, следовательно, общий множитель можно вынести за знак определителя: . 2221 2212 2122 1111)32(− − − −= nd Теперь воспользуемся тем, что в первой строке все элементы равны 1. Умножая первую строку на (– 2) и прибавляя её ко всем остальным строкам, мы получим. 0003 0030 0300 1111)32(− − − −= nd Побочная диагональ в определитель n-го порядка входит со знаком 2)1()1(− − nn (это легко проверить, если подсчитать число инверсий в подста- новке −− 1...21 ...321 nnn n). Тогда получим () ()() () () .32313321 1 1 2)1(1 2)1(−−=−−−= − − + − − nnd n nn n nn Пример 3. Вычислить определитель. 000 00330 00022 1321 nn nn d − − − − = Решение. Прибавим к (n – 1)-му столбцу n-ый, затем полученный (n – 1)-ый столбец прибавим к (n – 2)-му, и т. д. Тогда получим определитель треугольного вида. 2)1(! 0000 00300 00020 123 2)1(1 2)1(2)1(+ = −− + − ++ = nn n n nn nnnnnn d 2. Разложение определителя по строке (столбцу) Пример 1. Вычислить определитель d разложением по третьей строке, если d= 2164 7295 4173 2152 − −− −− − . Решение. Мы знаем, что имеет место, следующее разложение определителя по i-ой строке: d=a i1 A i1 +a i2 A i2 +…+a in A in , где A ij , j= n,1 – алгебраические дополнения элементов определителя. В нашем случае формула принимает вид d=a 31 A 31 +a 32 A 32 +a 33 A 33 +a 34 A 34 , т. е. мы имеем следующее разложение: d=5∙ (– 1) 3+1 ∙ 216 417 215 − − − +(– 9)∙(– 1) 3+2 ∙ 214 413 212 −− +2∙(– 1) 3+3 ∙ 264 473 252 − − − + + (-7)∙ (– 1) 3+4 ∙ 164 173 152 − −− − . Вычисляя полученные определители третьего порядка, получим d=5∙(– 6)+9∙12+2∙(– 54) + 7∙(– 3)= –51. Пример 2. Вычислить определитель d= 78102 4552 5882 6593 −−− . Решение. Прибавляя третью строку, умноженную на (– 1) ко всем остальным, получим d= 3350 4552 913130 2041 −−− . Прибавляя к третьей строке первую, умноженную на (– 2), получим d= 3350 0530 913130 2091 − −−− . Разложив этот определитель по первому столбцу, содержащему лишь один, не равный нулю элемент (с суммой индексов 1+1=2, т. е. чётной), получим d= 335 053 91313 − −−− . Преобразуем полученный определитель. Прибавляя к первой строке третью, умноженную на 3, получим d= 335 053 042 − − . Полученный определитель в третьем столбце содержит лишь один, не равный нулю элемент (с суммой индексов 3+3, т. е. чётной). Поэтому его удобно разложить по третьему столбцу: d=3 53 42 − − =3(10 – 12)= – 6. Пример 3. Вычислить определитель. 000 11000 00300 00220 00011 nn nn d − −− − − = Решение. Разложим определитель по 1-му столбцу, тогда () () () . 1100 0030 0022 0001 1 000 1100 0030 0022 1 12 nn n n nn d n −− − − −−+ −− − −= + В этом равенстве первый и второй определители имеют треугольный вид, поэтому первый определитель равен n!, а второй определитель равен (– 1)(– 2) . . . (1 – n)=(– 1) n–1 (n – 1)!. Тогда получим: () () () .011!1!! 1212 =−+=−+= +−++ nnn nnnd 3. Теорема Лапласа Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), 1≤k≤n – 1. Тогда сумма произведений всех миноров k – го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d. Пример 1. Пользуясь теоремой Лапласа, вычислить определитель, предварительно преобразовав его. d= 43220 50300 20100 34523 12532 − − −− −− . Выберем третью и четвёртую строки. В них находится единственный минор отличный от нуля, поэтому d= 53 21 − ∙(– 1) 3+4+4+5 ∙ 320 423 232 − −− . Воспользовавшись формулами для вычисления определителей второго и третьего порядков, получим d=12–12+16+27=43. Пример 2. Вычислить определитель. 005000 050000 500000 000500 000010 000001 − = d Решение. Данный определитель имеет вид, указанный в следствии из теоремы Лапласа, поэтому мы можем этим следствием воспользоваться. Тогда () .51 005 050 500 ,5 500 010 001 3 2)4)(3(3 − −− − −==−=−= n nn n BA По следствию из теоремы Лапласа имеем: () .51 2 2 147 2 − +− −== n nn BAd 4. Метод выделения линейных множителей Определитель рассматривается как многочлен от одной или нескольких входящих в него букв. Преобразуя его, обнаруживают, что он делится на ряд линейных множителей, а значит (если эти множители взаимно просты) и на их произведение. Сравнивая отдельные члены определителя с членами произведения линейных множителей, находят частное от деления определителя на это произведение и тем самым находят выражение определителя. Пример. Вычислить определитель методом линейных множителей d= 2 2 9132 5132 32x-21 3211 x − . Решение. Прибавим к первой строке вторую, умноженную на (– 1), а к третьей – четвёртую, умноженную на (– 1): d= 2 2 2 2 9132 4000 32x-21 0010 x x x − − − . Воспользуемся тем, что в первой строке и в третьей строке стоит лишь по одному неравному нулю элементу, и обнулим элементы стоящие во втором и третьем столбцах: d= 0102 4000 0201 0010 2 2 − − x x . Прибавим ко второй строке четвёртую, тогда d= 0102 4000 0303 0010 2 2 − − x x . Из первой строки видно, что определитель делится на x 2 – 1, из второй строки видно, что определитель делится на 3, а из третьей строки видно, что он делится на x 2 – 4. Так как все эти множители взаимно просты, то определитель делится на их произведение 3(x 2 – 1)(x 2 – 4). В данном произведении член x 4 имеет знак «+», а в определителе он содержится со знаком « – », поэтому d= – 3(x 2 – 1)(x 2 – 4). 5. Метод представления определителя в виде суммы определителей Некоторые определители легко вычисляются путём разложения их в сумму определителей того же порядка относительно строк или столбцов. Пример. Вычислить определитель d= add acc abb aaa 42 32 22 12 + + + + . Элементы первого столбца являются суммами двух слагаемых, это даёт возможность данный определитель представить как сумму двух определителей: d= ad ac ab aa 42 32 22 12 + add acc abb aaa 4 3 2 1 . В первом определителе первый и четвёртый столбцы пропорциональны, следовательно, он равен нулю. Во втором определителе первый и третий столбцы равны, следовательно, он тоже равен нулю. Таким образом, d=0. 6. Метод изменения элементов определителя Этот метод основан на следующем свойстве: если ко всем элементам определителя D прибавить одно и то же число x, то определитель увеличится на произведение числа x на сумму алгебраических дополнений всех элементов определителя D. D′=D+x = n ji ij A 1, . Таким образом, вычисление определителя D′ сводится к вычислению определителя D и суммы его алгебраических дополнений. Этот метод применяют в тех случаях, когда путём изменения всех элементов определителя на одно и то же число он приводится к такому виду, в котором легко сосчитать алгебраические дополнения всех элементов. Пример. Вычислить определитель D= n axxxx xaxx xxax xxxa 3 2 1 . Прибавим ко всем элементам число (– x), тогда D′= xa xa xa xa n − − − − 0000 000 000 000 3 2 1 . Алгебраические дополнения элементов определителя D, не лежащих на главной диагонали, равны нулю. Остальные алгебраические дополнения имеют положительный знак, поскольку все суммы индексов чётные. В нашем случае формула принимает вид: D′=(a 1 – x)…(a n – x), x = n ji ij A 1, = – x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − . Тогда искомый определитель D=D′–x = n ji ij A 1, =(a 1 – x)…(a n – x)+x)()()()(1 1 11 xaxaxaxa ni n i i −…−−…− + = − = =x(a 1 – x)(a 2 – x)…(a n – x) − +…+ − + xaxax n 111 1 . 7. Метод рекуррентных соотношений Этот метод заключается в том, что данный определитель выражают, преобразуя и разлагая его по строке или столбцу, через определители того же вида, но более низкого порядка. Полученное равенство называется рекуррентным соотношением. Этот метод используется для вычисления определителей вида.)(000 00 0 00 21 −− −+= + + + + = nnn DDD αββα βα βαα ββαα ββα D n – (α+β)D n – 1 +αβD n – 2 =0 или, в общем виде D n – pD n – 1 +qD n – 2 =0, где p=α+β, q=αβ. Пусть рекуррентное соотношение имеет вид: D n =pD n – 1 – qD n – 2 , n>2, (5) где p, q – постоянные не зависящие от n. При q=0 D n вычисляется как член геометрической прогрессии: D n =p 1 − n D 1 ; здесь D 1 – определитель 1 – го порядка данного вида, т. е. элемент определителя D n , стоящий в левом верхнем углу. Пусть q>0 и α, β – корни квадратного уравнения x 2 – px+q=0. Тогда р=α+β, q=αβ и равенство (5) можно переписать так: D n – αD n – 1 =β (D n – 1 – αD n – 2) (6) или D n – βD n – 1 =α(D n – 1 – βD n – 2). (7) Предположим сначала, что α≠β. По формуле (n – 1) – го члена геометрической прогрессии находим из равенств (6) и (7): D n – αD n – 1 =β 2 − n (D 2 – αD 1) и D n – βD n – 1 =α 2 − n (D 2 – βD 1). Откуда.)()(12 1 12 1 βα αββα − −−− = −− DDDD D nn n (8) Пусть теперь α=β. Равенства (6) и (7) обращаются в одно и то же D n – αD n – 1 =α (D n – 1 – αD n – 2), откуда D n – αD n – 1 =Aα 2 − n , (9) где A=D 2 – αD 1 . Заменяя здесь n на n – 1, получим: D n – 1 – αD n – 2 =Aα 3 − n , откуда D n – 1 =αD n – 2 +Aα 3 − n . Подставляя это выражение в равенство (9), найдём D n =α 2 D n – 2 +2Aα 2 − n . Повторяя тот же приём несколько раз, получим D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 . Пример 1. Вычислить определитель методом рекуррентных соотношений. d= 21...0000 12...0000 ..................... 00...2100 00...1210 00...0121 00...0012 . Решение. Разложим определитель по первой строке, тогда D n =2(– 1) 1+1 D n – 1 +(– 1) 2+1 2...000 ............... 0...210 0...120 0...011 . Определитель в последнем равенстве разложим по первому столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n =α 1 − n D 1 +(n – 1)Aα 2 − n , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =2, D 2 =3, тогда A=3 – 2=1. Следовательно, D n =2+(n – 1)=n+1. Пример 2. Вычислить определитель методом рекуррентных соотношений: d= 210...000 121...000 012...000 ..................... 000...210 000...122 000...043 . Решение. Разлагая d по последней строке, получим D n =2(– 1) nn + D n – 1 +(– 1))1(−+ nn 110...000 021...000 012...000 ..................... 000...210 000...122 000...043 . Определитель в последнем равенстве разложим по (n – 1) – му столбцу, тогда D n примет вид: D n =2D n – 1 – D n – 2 . Значит p=2, q=1. Решая уравнение x 2 – 2x+1=0, находим α, β и придём к случаю, когда α=β. Тогда по формуле D n = α n – 1 D 1 +(n – 1)Aα n – 2 , где A=D 2 – αD 1 находим, при α=1, D n =D 1 +(n – 1)A. В нашем случае D 1 =3, D 2 = – 2, тогда A= – 5. Следовательно, D n =3+(n – 1)(– 5)=8 – 5n. 8. Определитель Вандермонда Определителем Вандермонда называется определитель вида. 1111 11 3 1 2 1 1 22 3 2 2 2 1 321 −−−− = n n nnn n n aaaa aaaa aaaa d Докажем, что при любом n определитель Вандермонда равен произведению всевозможных разностей a i – a j , где 1≤j

Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Определение 7. Определителем матрицы А (определителем n-го порядка) называется алгебраическая сумма n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца. При этом произведение берётся со знаком «+», если подстановка из индексов входящих в него элементов чётная, и со знаком «-» в противном случае.

Обозначение определителя: |А | = .

Например, при n = 6 произведение а 21 а 13 а 62 а 34 а 46 а 55 является членом определителя, так как в него входит точно по одному элементу из каждой строки и из каждого столбца. Подстановка, составленная из его индексов будет . В ней 4-е инверсии в верхней строке и 2-е инверсии – в нижней. Общее число инверсий равно 6, т.е. подстановка чётная. Следовательно, данное произведение входит в разложение определителя со знаком «+».

Произведение а 21 а 13 а 62 а 34 а 46 а 15 не является членом определителя, так как в него входят два элемента из первой строки.

Свойства определителей.

1 0 . При транспонировании определитель не меняется (напомним, что транспонирование матрицы и определителя означает перемену строк и столбцов местами).

Действительно, если (-1) к является членом определителя, то все a 1 , a 2 , … , a n различны и к – число инверсий в перестановке (a 1 , a 2 , … , a n). При транспонировании номера строк станут номерами столбцов и наоборот. Следовательно, в произведении все множители будут из разных столбцов и строк, т.е. это произведение будет входить в транспонированный определитель. Знак его будет определяться числом инверсий в подстановке . Но это число, очевидно равно к. Итак, (-1) к будет членом транспонированного определителя. Так как мы брали любой член данного определителя, а число членов в данном и транспонированном определителях одинаково, то отсюда и следует их равенство. Из доказанного свойства следует, что всё, что будет доказано для строк определителя, будет верно и для его столбцов.

2 0 . Если все элементы строки (или столбца) определителя равны нулю, то определитель равен нулю.

Это следует из того, что по одному элементу указанной строки (или столбца) будет входить в каждый член определителя.

3 0 . Если все элементы какой-нибудь строки определителя имеют общий множитель, то его можно вынести за знак определителя.

Действительно, если все элементы к-ой строки имеют общий множитель l, то их можно записать в виде . Любой член определителя будет иметь вид (-1) s . Следовательно, из всех членов определителя можно вынести множитель l.

4 0 . Если две строки определителя поменять местами, то определитель сменит знак.


Действительно, если (-1) к любой член данного определителя, то в новом определителе номера строк р и q поменяются местами, а номера столбцов останутся прежними. Следовательно, в новом определителе это же самое произведение будет входить в виде (-1) s . Так как в номерах строк произошла одна транспозиция, а номера столбцов не изменились, то к и s имеют противоположные чётности. Итак, все члены данного определителя изменили знак, следовательно, и сам определитель изменил знак.

5 0 . Если две строки определителя пропорциональны, то определитель равен нулю.

Действительно, пусть все элементы к-ой строки равны соответствующим элементам р-ой строки, умноженным на l, т.е. |А | = = = 0.

6 0 . Если в определителе все элементы к-ой строки есть суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки, кроме к-ой, такие же как и в данном определителе. На месте элементов к-ой строки одного из них стоят первые слагаемые элементов к-ой строки данного определителя, а на месте элементов к-ой строки второго – вторые их слагаемые.

Пусть элементы к-ой строки будут + с к1 , + с к2 , …. , + с кn . Тогда любой член определителя будет иметь вид

(-1) s = (-1) s + (-1) s .

Собрав все первые слагаемые, мы получим определитель, отличающийся от данного только к-ой строкой. На месте к-ой строки будут стоять , , …. , . Собрав все вторые слагаемые, получим определитель тоже отличающийся от данного только к-ой строкой. В к-ой строке будут стоять с к1 , с к2 , …. , с кn .

7 0 . Если к одной строке определителя прибавить другую его строку, все элементы которой умножены на одно и то же число, то определитель не изменится.

Это свойство является следствием двух предыдущих.

Если в определителе |А | вычеркнуть к-ую строку и р-ый столбец, то останется определитель (n–1)-го порядка. Он называется минором, дополнительным для элемента и обозначается М кр . Число (-1) к+р ×М кр называется алгебраическим дополнением для элемента и обозначается А кр .

8 0 . Дополнительный минор и алгебраическое дополнение не зависит от того, какой элемент стоит в к-ой строке и р-ом столбце определителя.

Лемма 1 D = . (8)

Доказательство. Если а 11 = 0, то равенство (8) очевидно. Пусть а 11 ¹ 0. Так как в каждый член определителя входит точно один элемент из первой строки, то ненулевыми членами определителя могут быть только те, в которые входит а 11 . Все они имеют вид , где g к и к пробегают значения от 2 до n . Знак этого члена в определителе D определяется чётностью подстановки s = .Таким образом D есть алгебраическая сумма слагаемых вида со знаками, определяемыми подстановкой s. Если в этой сумме вынести за скобки а 11 , то получим, что D = а 11 × S , где S есть алгебраическая сумма слагаемых вида , знак которых определяется подстановкой s. Этих слагаемых, очевидно, (n – 1)!. Но подстановка s и подстановка имеют одинаковую чётность. Следовательно, S = М 11 . Так как А 11 = (-1) 1+1 ×М 11 = М 11 , то D = а 11 ×А 11 .

Лемма 2. D = (9)

Доказательство. В определителе D переставим р-ую строку последовательно с каждой предыдущей. При этом р-ая строка займёт место первой строки, но минор, дополнительный к элементу а рк не изменится. Всего будет сделано (р – 1) перестановка строк. Если новый определитель обозначить D 1 , то D = (-1) р-1 ×D. В определителе D 1 переставим к -ый столбец последовательно с каждым предыдущим столбцом, при этом будет сделано (к – 1) перестановка столбцов и минор, дополнительный к а рк , не изменится. Получится определитель

D 2 = . Очевидно, D 2 = (-1) р-1 ×D 1 = (-1) р+к-2 ×D = (-1) р+к ×D. По лемме 1, D 2 = а рк ×М рк. Отсюда D = а рк × (-1) р+к × М рк = а рк ×А рк.

Теорема 3. Определитель равен сумме произведений элементов некоторой строки на их алгебраические дополнения, т.е. D = а к1 А к1 + а к2 ×А к2 +…+а kn ×А kn (10).

Доказательство. Пусть D = . Элементы к-ой строки запишем в виде а к1 =а л1 + 0 + …+ 0, а к2 = 0 + а к2 + 0 + … + 0, … , а = 0 + 0 + …+ 0 + а . Используя свойство 6 0 , получим, что D =
= = а к1 А к1 + а к2 А к2 + … + а А (использовали лемму 2).

Теорема 4. Сумма произведений элементов одной строкиопределителя на алгебраические дополнения соответствующих элементов другой строки равна нулю.

Доказательство. Пусть D = . По предыдущей теореме

D = . Если взять , то в определителе Dбудет две одинаковые строки, т.е. D будет равен нулю. Следовательно, 0 = , если р ¹ к.

Замечание. Теоремы 3 и 4 будут верны, если в их формулировках слово «строка» заменить на слово «столбец».

Способ вычисления определителя n-го порядка.

Для вычисления определителя n -го порядка достаточно в какой-нибудь строке (или столбце) получить как можно больше нулей, используя свойство 7 0 , а потом использовать теорему 3. При этом вычисление определителя n-го порядка сведётся к вычислению определителя (n – 1)-го порядка.

Пример. Вычислите определитель D = .

Решение. Получим нули во второй строке. Для этого второй столбец 1) умножим на (-2) и прибавим к первому столбцу; 2) прибавим к третьему столбцу; 3) умножим на (-4) и прибавим к четвёртому столбцу. Получим, что D = . Разложим полученный определитель по элементам второй строки. При этом произведения всех элементов этой строки на их алгебраические дополнения, кроме элемента 1, равны нулю. Для того, чтобы получить алгебраическое дополнение для элемента 1, нужно вычеркнуть те строку и столбец, где этот элемент стоит, т.е. вторую строку и второй столбец. Знак алгебраического дополнения определяет (-1) 2+2 = (-1) 4 = +1. Итак, D = + . Получили определитель 3-го порядка. Этот определитель можно вычислить, используя диагонали и треугольники, но можно свести к определителю второго порядка. Умножим первый столбец 1) на (-4) и прибавим ко второму столбцу, 2) умножим его на 2 и прибавим к третьему столбцу. Получим, что

D = . Следовательно, D = (-1) 2+1 . Используя свойство 7 0 , прибавим к первому столбцу второй, получим D = - = -3×(23 – 40) = 51.

Некоторые определители (например, такие, в которых стоят «большие» миноры, целиком состоящие из нулей) удобно разлагать по нескольким строкам. Это позволяет делать теорема Лапласа. Пусть в определителе D выделен минор М s-го порядка, элементы которого стоят на строках с номерами к 1 ,к 2 ,…,к s и на столбцах с номерами р 1 ,р 2 ,…,р s . Вычеркнем строки и столбцы с указанными номерами. После этого останется определитель (n – s )-го порядка. Его называют минором М 1 , дополнительным к минору М. Если s = к 1 +…+ к s + р 1 +…+р s , то

алгебраическим дополнением к минору М называется А = (-1) s ×М 1 .

Теорема 5 (теорема Лапласа). Пусть в определителе n -го порядка выделены к строк (или столбцов). Определитель равен сумме произведений всех миноров, стоящих на выделенных строках, на их алгебраические дополнения.

Доказательство

(разложение по элементам i -й строки);

(разложение по элементам j -го столбца).

Убедимся в справедливости теоремы Лапласа на примере определителя матрицы третьего порядка. Разложим его вначале по элементам первой строки

Что совпадает с определением определителя матрицы третьего порядка.

Теорема 6 (теорема Крамера). Если в системе линейных уравнений число неизвестных равно числу уравнений и определитель D системы отличен от нуля, то система имеет решение и только одно. Это решение получается по формулам , где каждое D к получается из D заменой к-го столбца столбцом свободных членов.

Доказательство. Пусть дана система и D ¹ 0. Умножим первое уравнение на А 1к, второе – на А 2к, … ,n- ое уравнение – на А nк и все уравнения сложим. Получим +… ... + + … + =

Используя теоремы 3 и 4, получим х 1 ×0 + … + х к ×D + … + х n ×0 = D к , где D к = (к-ый столбец в определителе D заменён столбцом свободных членов уравнений данной системы). Отсюда = для всех к = 1, 2, …, n .

Основываясь на понятиях определителей второго и третьего порядков, можно аналогично ввести понятие определителя порядка n . Определители порядка выше третьего вычисляются, как правило, с использованием свойств определителей, сформулированных в п. 1.3., которые справедливы для определителей любого порядка.

Используя свойство определителей номер 9 0 введем определение определителя 4-го порядка:

Пример 2. Вычислить, используя подходящее разложение.

Аналогично вводится понятие определителя 5-го, 6-го и т.д. порядка. Значит определитель порядка n:

.

Все свойства определителей 2-го и 3-го порядков, рассмотренные раннее, справедливы и для определителей n-го порядка.

Рассмотрим основные методы вычисления определителей n -го порядка.


Замечание: прежде чем применять этот метод, полезно, используя основные свойства определителей, обратить в нуль все, кроме одного, элементы его некоторой строки или столбца. (Метод эффективного понижения порядка)

    Метод приведения к треугольному виду заключается в таком преобразовании определителя, когда все его элементы, лежащие по одну сторону от главной диагонали, становятся равными нулю. В этом случае определитель равен произведению элементов его главной диагонали.

Пример 3. Вычислить, приведением к треугольному виду.

Пример 4. Вычислить, используя метод эффективного понижения порядка

.

Решение: по свойству 4 0 определителей из первой строки вынесем множитель 10, а затем будем последовательно умножать вторую строку на 2, на 2, на 1 и складывать соответственно с первой, с третьей и четвертой строками (свойство 8 0).

.

Полученный определитель можно разложить по элементам первого столбца. Он будет сведен к определителю третьего порядка, который вычисляется по правилу Саррюса (треугольника).

Пример 5. Вычислить определитель, приведением к треугольному виду.

.

Пример 3. Вычислить, используя рекуррентные соотношения.


.

.

Лекция 4. Обратная матрица. Ранг матрицы.

1. Понятие обратной матрицы

Определение 1. Квадратная матрица А порядка n называется невырожденной, если ее определитель |A | ≠ 0. В случае, когда | A | = 0, матрица А называется вырожденной.

Только для квадратных невырожденных матриц А вводится понятие обратной матрицы А -1 .

Определение 2 . Матрица А -1 называется обратной для квадратной невырожденной матрицыА, если А -1 А = АА -1 = Е, где Е – единичная матрица порядка n .

Определение 3 . Матрица называетсяприсоединенной, ее элементами являются алгебраические дополнения транспонированной матрицы
.

Алгоритм вычисления обратной матрицы методом присоединенной матрицы.


, где
.

    Проверяем правильность вычисления А -1 А = АА -1 = Е. (Е – единичная матрица)

Матрицы А и А -1 взаимообратные. Если | A | = 0, то обратная матрица не существует.

Пример 1. Дана матрица А. Убедиться, что она невырожденная, и найти обратную матрицу
.

Решение:
. Следовательно матрица невырожденная.

Найдем обратную матрицу. Составим алгебраические дополнения элементов матрицы А.







Получаем

.