Стохастический градиентный спуск. Варианты реализации

В рамках моей домашней работы меня попросили реализовать стохастический градиентный спуск, чтобы решить проблему линейной регрессии (хотя у меня всего 200 учебных примеров). Моя проблема в том, что стохастический градиентный спуск сходится слишком гладко, почти так же, как спуск градиента партии, что подводит меня к моему вопросу: почему это выглядит так гладко, учитывая тот факт, что обычно это намного более шумно. Это потому, что я использую его только с 200 примерами?

MSE с весами от стохастического градиентного спуска: 2.78441258841

MSE с весами от градиентного спуска: 2.78412631451 (идентичный MSE с весами из нормального уравнения)

Def mserror(y, y_pred): n = y.size diff = y - y_pred diff_squared = diff ** 2 av_er = float(sum(diff_squared))/n return av_er

Def linear_prediction(X, w): return dot(X,np.transpose(w))

Def gradient_descent_step(X, y, w, eta): n = X.shape grad = (2.0/n) * sum(np.transpose(X) * (linear_prediction(X,w) - y), axis = 1) return w - eta * grad

Def stochastic_gradient_step(X, y, w, train_ind, eta): n = X.shape grad = (2.0/n) * np.transpose(X) * (linear_prediction(X,w) - y) return w - eta * grad

Def gradient_descent(X, y, w_init, eta, max_iter): w = w_init errors = errors.append(mserror(y, linear_prediction(X,w))) for i in range(max_iter): w = gradient_descent_step(X, y, w, eta) errors.append(mserror(y, linear_prediction(X,w))) return w, errors

Def stochastic_gradient_descent(X, y, w_init, eta, max_iter): n = X.shape w = w_init errors = errors.append(mserror(y, linear_prediction(X,w))) for i in range(max_iter): random_ind = np.random.randint(n) w = stochastic_gradient_step(X, y, w, random_ind, eta) errors.append(mserror(y, linear_prediction(X,w))) return w, errors

1 ответ

Нет ничего необычного в вашем графике. Следует также отметить, что ваш пакетный метод требует меньше итераций для схождения.

Вы можете позволить SGD-сюжетам из нейронных сетей обладать вашим взглядом на то, что должно выглядеть SGD. Большинство нейронных сетей - это гораздо более сложные модели (их трудно оптимизировать), работающие над более сложными проблемами. Это способствует "зубчатости", которую вы ожидаете.

Линейная регрессия является простой проблемой и имеет выпуклое решение. Это означает, что любой шаг, который снизит нашу частоту ошибок, гарантированно станет шагом к наилучшему возможному решению. Это намного сложнее, чем нейронные сети, и часть того, почему вы видите плавное снижение ошибок. Вот почему вы видите почти идентичный MSE. И SGD, и пакет будут сходиться к точному решению.

Стохастический градиент оценивается по формуле :

т. е. представляет собой сумму всех случайных векторов с весами, равными приращениям минимизируемой функции в данных случайных направлениях.

Если в качестве взять орты, т. то эта оценка при как легко заметить из (3.3.22), дает точное значение градиента.

Обе описанные оценки градиента могут эффективно применяться при любых значениях в том числе и при что существенно отличает их от детерминированного способа оценивания (3.3.22), для которого строго Это же обстоятельство подтверждает, что детерминированные методы обобщаются случайными (см. конец подраздела 3.3.1). Приведем еще пример такого обобщения.

Градиентный поиск (3.3.21) является частным случаем по крайней мере двух алгоритмов случайного поиска. Первый алгоритм:

где - по-прежнему единичный случайный -мерный вектор. Это известный градиентный алгоритм случайного поиска . Второй алгоритм имеет вид (3.3.23), но оценка градиента вычисляется по формуле

При как легко заметить, оба алгоритма вырождаются, в градиентный алгоритм поиска (3.3.21).

Таким образом, случайный поиск является естественным расширением, продолжением и обобщением известных регулярных методов поиска.

Другой особенностью случайного поиска, которая открывает широкие возможности для его эффективного применения, является использование оператора случайного шага в качестве стохастической модели сложных регулярных операторов отыскания направлений поиска в пространстве оптимизируемых параметров

Так, алгоритм случайного поиска с линейной тактикой (3.3.12) является стохастической моделью алгоритма наискорейшего спуска:

в которой случайный вектор моделирует оценку градиента. Любопытно, что подобную «оценку» нельзя даже назвать грубой, так как ее стохастические свойства и не напоминают свойств оцениваемого градиента. Однако, как показано выше, алгоритм случайного поиска не только работоспособен, но в ряде случаев и более эффективен, чем алгоритм наискорейшего спуска. Здесь

оператор случайного шага заменяет громоздкий оператор оценки градиента, например, по формуле (3.3.22).

Следующей особенностью случайного поиска, выгодно отличающей его от регулярных методов, является глобальность, проявляющаяся прежде всего в локальных алгоритмах случайного поиска, не предназначенных для отыскания глобального экстремума. Так, алгоритм случайного спуска может найти глобальный экстремум, а регулярный алгоритм наискорейшего спуска в принципе не допускает такой возможности, поскольку он построен для отыскания локального экстремума.

Следовательно, глобальность алгоритмов случайного поиска является как бы «премией» за использование случайности и чем-то вроде «бесплатного приложения» к алгоритму. Это обстоятельство особенно важно при оптимизации объектов с неизвестной структурой, когда нет полной уверенности в одноэкстремальности задачи и возможно (хотя и не ожидается) наличие нескольких экстремумов. Использование в таком случае методов глобального поиска было бы неразумной расточительностью. Методы локального случайного поиска здесь наиболее приемлемы, так как они эффективно решают локальную задачу и могут в принципе решить глобальную, если таковая будет иметь место. Это обеспечивает случайному поиску своеобразную психологическую надежность, которую очень ценят пользователи.

Алгоритмическая простота случайного поиска делает его привлекательным в первую очередь для потребителей . Опыт показывает, что известные алгоритмы случайного поиска являются лишь «канвой», на которой пользователь в каждом конкретном случае «вышивает узоры» новых алгоритмов, отражающих не только его вкусы и наклонности (что нельзя не учитывать), но и специфику оптимизируемого объекта. Последнее создает благоприятную основу для реализации известного принципа, что алгоритм должен конструироваться «под объект». Наконец, алгоритмическая простота случайного поиска обусловливает простоту его аппаратурной реализации. Это не только дает возможность строить простые, компактные и надежные оптимизаторы с неограниченным числом оптимизируемых параметров , но и позволяет довольно просто организовать их оптимальный синтез на ЭВМ .

В этой лекции мы обсудим различные способы реализации , об их достоинствах и недостатках. Я бы хотел поговорить о трёх основных типах градиентного спуска – полном, пакетном и стохастическом.

В большинстве предыдущих курсов мы пользовались полным градиентным спуском.

Почему именно так?

Потому что это приносит больше пользы, если мы хотим максимизировать правдоподобие для всего учебного набора:

Недостатком такого подхода является то, что вычисление градиента занимает много времени, поскольку он зависит от каждого примера (наблюдения).

Полной противоположностью является стохастический градиентный спуск. Он зависит от ошибки лишь для одного конкретного наблюдения:

Метод основывается на том факте, что все наблюдения являются независимыми и равномерно распределёнными, поэтому в долгосрочной перспективе ошибка будет уменьшаться, ведь все наблюдения берутся из одного и того распределения. В таком случае, когда расчёты сократились от N наблюдений до 1, – это замечательное улучшение метода.

В чём же недостаток?

Дело в том, что если при полном градиентном спуске логарифм функции правдоподобия всегда улучшается на каждой итерации, то при стохастическом логарифм функции правдоподобия может даже ухудшиться. На самом деле поведение функции затрат будет хаотично меняться при каждой итерации, но в долгосрочной перспективе она всё же уменьшится.

Удачным компромиссов между этими двумя методами является пакетный градиентный спуск. Если у нас есть, к примеру, 10 000 наблюдений, то мы можем разделить их на 100 пакетов по 100 наблюдений в каждом и вычислять функцию затрат, основываясь на каждом пакете при каждой итерации:

Что в этом случае будет с функцией затрат?

Она тоже может становиться больше, но будет менее хаотична, чем в случае чисто стохастического градиентного спуска.

И пользуясь случаем, хочу отметить, что если вы желаете получить бесплатный материал, связанный с глубоким и машинным обучением, а также обработке данных, посетите мой сайт lazyprogrammer.me. Я постоянно пишу новые материалы по этим темам, так что проверяйте почаще. Там должно появиться предложение подписаться, так что вы можете подписаться на моё бесплатное введение в обработку данных. В нём много замечательных ресурсов для изучения языка Python, алгоритмов и структур данных, а также купонов на курсы на .

Полный, пакетный и стохастический градиентный спуск в коде

Теперь сравним изменение функции затрат в трёх случаях градиентного спуска – полного, пакетного и стохастического. Поскольку в этом примере много кода скопировано из других файлов, мы просто последовательно пройдёмся по тексту программы.

Итак, в начале файла мы импортируем все обычные библиотеки. Из файла util.py мы импортируем функцию get_transformed_data , чтобы преобразовать данные по методу главных компонент, а также функции forward, error_date, cost, gradW, gradb и y2indicator.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.utils import shuffle

from datetime import datetime

from util import get_transformed_data, forward, error_rate, cost, gradW, gradb, y2indicator

Для ускорения процесса мы вместо полной нейронной сети используем .

Итак, вначале мы используем функцию get_transformed_data , взяв лишь первые 300 столбцов. Далее нормализуем наши X путём вычитания среднего значения и деления на стандартное отклонение. Затем, поскольку функция get_transformed_data уже перемешала наши данные, мы оставляем последние 1 000 примеров в качестве проверочного набора, использую остальные в качестве учебного.

def main():

X, Y, _, _ = get_transformed_data()

X = X[:, :300]

# normalize X first

mu = X.mean(axis =0)

std = X.std(axis =0)

X = (X – mu) / std

print “Performing logistic regression…”

Xtrain = X[:-1000,]

Ytrain = Y[:-1000]

Xtest = X[-1000:,]

N, D = Xtrain.shape

Ytrain_ind = y2indicator(Ytrain)

Ytest_ind = y2indicator(Ytest)

Затем инициируем весовые коэффициенты и свободные члены. Обратите внимание, что инициируемые весовые коэффициенты установлены относительно малыми – пропорциональными квадратному корню из размерности. Ещё до записи этого видео я установил значения коэффициента обучения и штрафа регуляризации – 0,0001 и 0,01 соответственно. Количество итераций установим равным 200, чтобы вычисления шли не слишком долго.

# 1. full

b = np.zeros(10)

LL =

lr = 0.0001

reg = 0.01

t0 = datetime.now()

for i in xrange (200):

p_y = forward(Xtrain, W, b)

Далее обновляем значения и свободных членов при помощи градиентного спуска и . Используем также функцию forward , чтобы вычислить значение функции затрат при прохождении учебного набора. Будем выводить значение коэффициента ошибок через каждые десять итераций. Кроме того, будем выводить на экран потраченное на вычисления время, поскольку один из методов весьма быстро, а другой – весьма медлителен.

W += lr*(gradW(Ytrain_ind, p_y, Xtrain) – reg*W)

b += lr*(gradb(Ytrain_ind, p_y) – reg*b)

LL.append(ll)

if i % 10 == 0:

print “Error rate:”, err

p_y = forward(Xtest, W, b)

print “Elapsted time for full GD:”, datetime.now() – t0

В случае стохастического градиентного спуска мы в большой мере делаем то же самое, разве что мы делаем лишь один проход по данным, поскольку при стохастическом градиентном спуске мы рассматриваем лишь один пример и обновляем весовые коэффициенты и свободные члены отдельно при каждом проходе, после чего заново перемешиваем данные. Поскольку если проходить по всем примерам, то работать программа будет очень медленно, постольку мы ограничимся лишь 500 примеров.

Затем, как обычно, вычисляем градиент, обновляем весовые коэффициенты с применением регуляризации и вычисляем коэффициент ошибок, разве что выводим значение коэффициента лишь каждые N/2 прохода, поскольку в противном случае вычисления будут очень долгими. В остальном – всё то же самое.

# 2. stochastic

W = np.random.randn(D, 10) / 28

b = np.zeros(10)

LL_stochastic =

lr = 0.0001

reg = 0.01

t0 = datetime.now()

for i in xrange (1): # takes very long since we’re computing cost for 41k samples

for n in xrange (min(N, 500)): # shortcut so it won’t take so long…

x = tmpX.reshape(1,D)

y = tmpY.reshape(1,10)

p_y = forward(x, W, b)

p_y_test = forward(Xtest, W, b)

ll = cost(p_y_test, Ytest_ind)

LL_stochastic.append(ll)

if n % (N/2) == 0:

err = error_rate(p_y_test, Ytest)

print “Cost at iteration %d: %.6f” % (i, ll)

print “Error rate:”, err

p_y = forward(Xtest, W, b)

print “Final error rate:”, error_rate(p_y, Ytest)

print “Elapsted time for SGD:”, datetime.now() – t0

При пакетном градиентном спуске, опять-таки, почти всё то же самое. Установим, что в каждом пакете по 500 примеров, так что общее количество пакетов будет равно N, делённое на размер пакета.

# 3. batch

W = np.random.randn(D, 10) / 28

b = np.zeros(10)

LL_batch =

lr = 0.0001

reg = 0.01

batch_sz = 500

n_batches = N / batch_sz

t0 = datetime.now()

for i in xrange (50):

tmpX, tmpY = shuffle(Xtrain, Ytrain_ind)

for j in xrange (n_batches):

x = tmpX

y = tmpY

p_y = forward(x, W, b)

W += lr*(gradW(y, p_y, x) – reg*W)

b += lr*(gradb(y, p_y) – reg*b)

p_y_test = forward(Xtest, W, b)

ll = cost(p_y_test, Ytest_ind)

LL_batch.append(ll)

if j % (n_batches/2) == 0:

err = error_rate(p_y_test, Ytest)

print “Cost at iteration %d: %.6f” % (i, ll)

print “Error rate:”, err

p_y = forward(Xtest, W, b)

print “Final error rate:”, error_rate(p_y, Ytest)

print “Elapsted time for batch GD:”, datetime.now() – t0

И в конце мы выводим все наши данные на экран.

x1 = np.linspace(0, 1, len(LL))

plt.plot(x1, LL, label =”full”)

x2 = np.linspace(0, 1, len(LL_stochastic))

plt.plot(x2, LL_stochastic, label =”stochastic”)

x3 = np.linspace(0, 1, len(LL_batch))

plt.plot(x3, LL_batch, label =”batch”)

plt.legend()

plt.show()

if __name__ == ‘__main__’:

Итак, запустим программу.

Мы можем видеть, что в случае стохастического градиентного спуска ошибка почти не улучшилась. Это значит, что необходимо намного больше итераций, чтобы добиться улучшения при стохастическом градиентном спуске. Полный градиентный спуск, как мы видим, сходится быстрее, чем пакетный, но и работает он медленнее.

Если мы посмотрим на изменение функции затрат в увеличенном масштабе, то увидим, что в случае пакетного градиентного спуска оно является не очень гладким, в отличие от полного градиентного спуска, когда функция затрат изменяется плавно, поскольку в этом случае функция затрат всегда уменьшается. В случае стохастического градиентного спуска изменение функции затрат также не плавно:


Post Views: 588

Цель - минимизировать функцию F в пространстве все возможных точек. График F представляет собой параболическую поверхность, и у неё должен быть один-единственный минимум. А вопрос о том, как исправлять точки так, чтобы двигаться в сторону этого минимума, давным-давно решён в математическом анализе. Для этого нужно двигаться в направлении, противоположном градиенту - вектору, вдоль которого производная максимальна. Градиент вычисляется следующим образом:

Т.е. для вычисления градиента мы должны использовать производную от заданной функции при соответствующих точках (переменных).

Таким образом, чтобы определить, как правильно исправлять координаты точек, мы должны вычислить градиент и отнять вектор какой-нибудь наперёд заданной длины (в нашем случае этой длинной выступает заданный шаг а) от имеющегося вектора точек:

Чтобы реализовать это программно, нужно научиться дифференцировать функцию F:

Пример 1 - алгоритм градиентного спуска для одной точки.

GradientDescent()

  • 1. Инициализировать маленькими случайными значениями.
  • 2. Повторить Number_of_Steps раз:
    • а) Для всех i от 1 до n
    • б) Для всех j от 1 до m :
      • (i) Для всех i от 1 до n
  • 3. выдать значения.

Это значит, что нам нужно подправлять координаты точек после каждого тестового примера так:

Новый, изменённый алгоритм показан в примере 1. Правда, нужно внести и другие изменения. Во-первых, мы больше не можем рассчитывать на то, что в какой-то момент достигнем идеальной гармонии с исходными данными, и нам нужно научиться останавливаться в какой-то момент. В качестве условия для остановки здесь принято то, что алгоритм выполняется пока разности значений функции меньше ранее заданной точности. Другое изменение - в том, что если оставлять а постоянным, то на каком-то этапе точка перестанет приближаться к искомому минимуму, а начнёт его «перепрыгивать» на каждой итерации, то в одну сторону, то в другую. Поэтому a нужно уменьшать со временем. В данной программе мы уменьшаем шаг на два.

Этот алгоритм может находить локальные минимумы (у рассматривавшегося нами параболоида есть один локальный минимум). Его отличие в том, что он не собирает всю информацию со всех тестовых примеров, а модифицирует точки сразу же, после каждого шага итерации.

Градиентный спуск — самый используемый алгоритм обучения, он применяется почти в каждой модели . Градиентный спуск — это, по сути, и есть то, как обучаются модели. Без ГС машинное обучение не было бы там, где сейчас. Метод градиентного спуска с некоторой модификацией широко используется для обучения и глубоких , и известен как ошибки.

В этом посте вы найдете объяснение градиентного спуска с небольшим количеством математики. Краткое содержание:

  • Смысл ГС — объяснение всего алгоритма;
  • Различные вариации алгоритма;
  • Реализация кода: написание кода на языке Phyton.

Что такое градиентный спуск

Градиентный спуск — метод нахождения минимального значения функции потерь (существует множество видов этой функции). Минимизация любой функции означает поиск самой глубокой впадины в этой функции. Имейте в виду, что функция используется, чтобы контролировать ошибку в прогнозах модели машинного обучения. Поиск минимума означает получение наименьшей возможной ошибки или повышение точности модели. Мы увеличиваем точность, перебирая набор учебных данных при настройке параметров нашей модели (весов и смещений).

Итак, градиентный спуск нужен для минимизации функции потерь.

Суть алгоритма – процесс получения наименьшего значения ошибки. Аналогично это можно рассматривать как спуск во впадину в попытке найти золото на дне ущелья (самое низкое значение ошибки).


Поиск минимума функции

В дальнейшем, чтобы найти самую низкую ошибку (глубочайшую впадину) в функции потерь (по отношению к одному весу), нужно настроить параметры модели. Как мы их настраиваем? В этом поможет математический анализ. Благодаря анализу мы знаем, что наклон графика функции – производная от функции по переменной. Это наклон всегда указывает на ближайшую впадину!

На рисунке мы видим график функции потерь (названный «Ошибка» с символом «J») с одним весом. Теперь, если мы вычислим наклон (обозначим это dJ/dw) функции потерь относительно одного веса, то получим направление, в котором нужно двигаться, чтобы достичь локальных минимумов. Давайте пока представим, что наша модель имеет только один вес.

Функция потерь

Важно: когда мы перебираем все учебные данные, мы продолжаем добавлять значения dJ/dw для каждого веса. Так как потери зависят от примера обучения, dJ/dw также продолжает меняться. Затем делим собранные значения на количество примеров обучения для получения среднего. Потом мы используем это среднее значение (каждого веса) для настройки каждого веса.

Также обратите внимание: Функция потерь предназначена для отслеживания ошибки с каждым примером обучениям, в то время как производная функции относительного одного веса – это то, куда нужно сместить вес, чтобы минимизировать ее для этого примера обучения. Вы можете создавать модели даже без применения функции потерь. Но вам придется использовать производную относительно каждого веса (dJ/dw).

Теперь, когда мы определили направление, в котором нужно подтолкнуть вес, нам нужно понять, как это сделать. Тут мы используем коэффициент скорости обучения, его называют гипер-параметром. Гипер-параметр – значение, требуемое вашей моделью, о котором мы действительно имеем очень смутное представление. Обычно эти значения могут быть изучены методом проб и ошибок. Здесь не так: одно подходит для всех гипер-параметров. Коэффициент скорости обучения можно рассматривать как «шаг в правильном направлении», где направление происходит от dJ/dw.

Это была функция потерь построенная на один вес. В реальной модели мы делаем всё перечисленное выше для всех весов, перебирая все примеры обучения. Даже в относительно небольшой модели машинного обучения у вас будет более чем 1 или 2 веса. Это затрудняет визуализацию, поскольку график будет обладать размерами, которые разум не может себе представить.

Подробнее о градиентах

Кроме функции потерь градиентный спуск также требует градиент, который является dJ/dw (производная функции потерь относительно одного веса, выполненная для всех весов). dJ/dw зависит от вашего выбора функции потерь. Наиболее распространена функция потерь среднеквадратичной ошибки.

Производная этой функции относительно любого веса (эта формула показывает вычисление градиента для ):

Это – вся математика в ГС. Глядя на это можно сказать, что по сути, ГС не содержит много математики. Единственная математика, которую он содержит в себе – умножение и деление, до которых мы доберемся. Это означает, что ваш выбор функции повлияет на вычисление градиента каждого веса.

Коэффициент скорости обучения

Всё, о чём написано выше, есть в учебнике. Вы можете открыть любую книгу о градиентном спуске, там будет написано то же самое. Формулы градиентов для каждой функции потерь можно найти в интернете, не зная как вывести их самостоятельно.

Однако проблема у большинства моделей возникает с коэффициентом скорости обучения. Давайте взглянем на обновленное выражение для каждого веса (j лежит в диапазоне от 0 до количества весов, а Theta-j это j-й вес в векторе весов, k лежит в диапазоне от 0 до количества смещений, где B-k — это k-е смещение в векторе смещений). Здесь alpha – коэффициент скорости обучения. Из этого можно сказать, что мы вычисляем dJ/dTheta-j (градиент веса Theta-j), и затем шаг размера alpha в этом направлении. Следовательно, мы спускаемся по градиенту. Чтобы обновить смещение, замените Theta-j на B-k.

Если этот размера шага alpha слишком велик, мы преодолеем минимум: то есть промахнемся мимо минимума. Если alpha слишком мала, мы используем слишком много итераций, чтобы добраться до минимума. Итак, alpha должна быть подходящей.

Использование градиентного спуска

Что ж, вот и всё. Это всё, что нужно знать про градиентный спуск. Давайте подытожим всё в псевдокоде.

Примечание: Весы здесь представлены в векторах. В более крупных моделях они, наверное, будут матрицами.

От i = 0 до «количество примеров обучения»

1. Вычислите градиент функции потерь для i-го примера обучения по каждому весу и смещению. Теперь у вас есть вектор, который полон градиентами для каждого веса и переменной, содержащей градиент смещения.

2. Добавьте градиенты весов, вычисленные для отдельного аккумулятивного вектора, который после того, как вы выполнили итерацию по каждому учебному примеру, должен содержать сумму градиентов каждого веса за несколько итераций.

3. Подобно ситуации с весами, добавьте градиент смещения к аккумулятивной переменной.

Теперь, ПОСЛЕ перебирания всех примеров обучения, выполните следующие действия:

1. Поделите аккумулятивные переменные весов и смещения на количество примеров обучения. Это даст нам средние градиенты для всех весов и средний градиент для смещения. Будем называть их обновленными аккумуляторами (ОА).

2. Затем, используя приведенную ниже формулу, обновите все веса и смещение. Вместо dJ / dTheta-j вы будете подставлять ОА (обновленный аккумулятор) для весов и ОА для смещения. Проделайте то же самое для смещения.

Это была только одна итерация градиентного спуска.

Повторите этот процесс от начала до конца для некоторого количества итераций. Это означает, что для 1-й итерации ГС вы перебираете все примеры обучения, вычисляете градиенты, потом обновляете веса и смещения. Затем вы проделываете это для некоторого количества итераций ГС.

Различные типы градиентного спуска

Существует 3 варианта градиентного спуска:

1. Мini-batch : тут вместо перебирания всех примеров обучения и с каждой итерацией, выполняющей вычисления только на одном примере обучения, мы обрабатываем n учебных примеров сразу. Этот выбор хорош для очень больших наборов данных.

2. Стохастический градиентный спуск : в этом случае вместо использования и зацикливания на каждом примере обучения, мы ПРОСТО ИСПОЛЬЗУЕМ ОДИН РАЗ. Есть несколько вещей замечаний:

  • С каждой итерацией ГС вам нужно перемешать набор обучения и выбрать случайный пример обучения.
  • Поскольку вы используете только один пример обучения, ваш путь к локальным минимумам будет очень шумным, как у пьяного человека, который много выпил.

3. Серия ГС : это то, о чем написано в предыдущих разделах. Цикл на каждом примере обучения.


Картинка, сравнивающая 3 попадания в локальные минимумы

Пример кода на python

Применимо к cерии ГС, так будет выглядеть блок учебного кода на Python.

Def train(X, y, W, B, alpha, max_iters): """ Performs GD on all training examples, X: Training data set, y: Labels for training data, W: Weights vector, B: Bias variable, alpha: The learning rate, max_iters: Maximum GD iterations. """ dW = 0 # Weights gradient accumulator dB = 0 # Bias gradient accumulator m = X.shape # No. of training examples for i in range(max_iters): dW = 0 # Reseting the accumulators dB = 0 for j in range(m): # 1. Iterate over all examples, # 2. Compute gradients of the weights and biases in w_grad and b_grad, # 3. Update dW by adding w_grad and dB by adding b_grad, W = W - alpha * (dW / m) # Update the weights B = B - alpha * (dB / m) # Update the bias return W, B # Return the updated weights and bias.

Вот и всё. Теперь вы должны хорошо понимать, что такое метод градиентного спуска.