Применения CASE технологий. Автоматизированное проектирование информационных систем

1.1 Понятие термина – «CASE-средства»

Первоначально под термином «CASE-технология» (Computer – Aided Software Engineering) понималось буквально – «автоматизированная разработка ПО ИС с помощью компьютерных технологий».

В настоящее время под термином CASE-средства понимаются обширный набор программных средств, поддерживающих процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного ПО (приложений) и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

CASE-технологии представляют собой совокупность методологий и инструментарий аналитиков, разработчиков и программистов, предназначенный для автоматизации процессов проектирования и сопровождения ИС на всем периоде жизненного цикла .

Методология CASE-средства определяет этапы и шаги реализации проекта, а также правила использования методов, которыми разрабатывается проект. МетодCASE-средства –это процедура или техника генерации описаний компонентов информационной системы (проектирование потоков и структур данных). Нотация CASE-средства – отображение структуры системы, элементов данных с помощью специальных графических символов.

CASE-средства – это специальные программы, которые поддерживают одну или несколько методологий анализа и проектирования информационных систем. CASE-технология, в рамках методологии, включает в себя методы, с помощью которых на основе нотаций строятся диаграммы, поддерживаемые конкретным CASE-средством. CASE-технологии не могут считаться самостоятельными, они только обеспечивают высокую эффективность их применения, определяемую временем разработки проекта.

Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования информационных систем: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл программного обеспечения. Наиболее трудоемкими этапами разработки информационных систем являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают качество принимаемых технических решений и подготовку проектной документации. При этом большую роль играют методы визуального представления информации. Это предполагает построение структурных или иных диаграмм в реальном масштабе времени, использование многообразной цветовой палитры, сквозную проверку синтаксических правил. Графические средства моделирования предметной области позволяют разработчикам в наглядном виде изучать существующую информационную систему, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.

1.2 Типовая структура CASE-средств

CASE-средства служат инструментарием для поддержки и использования методов структурного анализа в проектировании. Эти инструменты поддерживают работу пользователей при создании и редактировании графического проекта в интерактивном режиме. Они способствуют организации проекта в виде иерархии уровней абстракции, выполняют проверки соответствия компонентов. Фактически CASE-средства представляют собой новый тип графически-ориентированных инструментов, восходящих к системе поддержки ЖЦ ПО. Обычно к ним относят любое программное средство, обеспечивающее автоматическую помощь при разработке ПО, его сопровождении или деятельности по управлению проектом, и проявляющее следующие дополнительные характеристики:

    мощная графика для описания и документирования систем ПО со специфическим интерфейсом пользователя, развивающая творческие возможности специалистов и не отвлекающая их от процесса проектирования на решение второстепенных вопросов;

    интеграция, обеспечивающая легкость передачи данных между средствами и позволяющая управлять всем процессом проектирования и разработки ПО непосредственно через процесс планирования проекта;

    использование компьютерного хранилища (репозитария) для шаблонов частей и отдельных элементов проекта, которые могут использоваться различными разработчиками, как основа для автоматического продуцирования ПО и повторного его использования в будущих системах.

Помимо перечисленных основополагающих принципов графической ориентации, интеграции и локализации всей проектной информации в репозитарии в основе концептуального построения CASE-средств лежат следующие положения :

1. Человеческий фактор, определяющий разработку ПО как легкий, удобный и экономичный процесс.

2. Широкое использование базовых программных средств, получивших массовое распространение в других приложениях (БД и СУБД, компиляторы с различных языков программирования, отладчики, документаторы, издательские системы, оболочки экспертных систем и базы знаний, языки четвертого поколения и др.).

3. Автоматизированная или автоматическая кодогенерация, для различных платформ и различного вида кода: преобразования для получения документации; формирования структуры БД, ввода/модификации данных; получения выполняемых машинных кодов из спецификаций ПО; сборки модулей из словарей и моделей данных и повторно используемых программ.

4. Простота использования, позволяющая получать компоненты, поддающиеся управлению, обозримые и доступные для понимания, а также обладающие простой и ясной структурой.

5. Доступность для разных категорий пользователей.

6. Рентабельность.

7. Эффективное решение задач по сопровождению разработанного проекта, обеспечивающая способность адаптации при изменении требований и целей проекта заказчиком.

В состав практически всех современных CASE-средств входят следующие элементы :

    репозиторий, позволяет обеспечить сохранность шаблонов проекта и его определенных компонентов, синхронизацию информации от разных разработчиков в процессе групповой разработки, проверка метаданных на полноту и непротиворечивость;

    средства разработки приложений, с использованием языков 4GL и генераторов кодов;

    средства тестирования;

    средства документирования;

    графические средства анализа и проектирования, которые дают возможность создавать и редактировать модели информационных систем в виде иерархически связанных диаграмм в реализованной нотации конкретной методологии;

    средства реинжиниринга;

    средства конфигурационного управления;

    средства управления проектом.

1.3 Эволюция развития CASE-технологий

С самого начала CASE-технологии развивались с целью преодоления ограничений «ручного» применения методологии структурного анализа и проектирования 60-70-х годов за счет ее автоматизации и интеграции в поддерживающие средства. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями моделирования, они только делают более эффективными их применение, с точки зрения времени разработки.

Традиционно выделяют шесть периодов, качественно отличающихся применяемой техникой и методами разработки ПО, которые характеризуются использованием в качестве инструментальных средств:

1. Ассемблеров, дампов памяти, анализаторов;

2. Компиляторов, интерпретаторов, трассировщиков;

3. Символьных отладчиков, пакетов программ;

4. Систем анализа и управления исходными текстами;

5. CASE-средств анализа требований, проектирования спецификаций и структуры, редактирования интерфейсов (первая генерация CASE-I);

6. CASE-средств генерации исходных текстов и реализации интегрированного окружения поддержки полного жизненного цикла разработки ПО (вторая генерация CASE-II)

CASE-I является первой технологией, адресованной непосредственно системным аналитикам и проектировщикам, и включающей средства для поддержки графических моделей, проектирования спецификаций, экранных редакторов и словарей данных. Она не предназначена для поддержки полного жизненного цикла и концентрирует внимание на функциональных спецификациях и начальных шагах проекта - системном анализе, определении требований, системном проектировании, логическом проектировании БД .

CASE-II отличается значительно более развитыми возможностями, улучшенными характеристиками и исчерпывающим подходом к полному жизненному циклу разрабатываемого ПО. В инструментарии CASE-II, в первую очередь, используются средства поддержки автоматической кодогенерации, а также, обеспечивается полная функциональная поддержка для выполнения графических системных требований и спецификаций проектирования; контроля, анализа и связывания системной информации и информации по управлению проектированием; построение прототипов и моделей системы; тестирования, верификации и анализа сгенерированных программ; генерации документов по проекту; контроля на соответствие стандартам по всем этапам жизненного цикла. CASE-II может включать свыше 100 функциональных компонент, поддерживающих все этапы жизненного цикла, при этом пользователям предоставляется возможность выбора необходимых средств и их интеграции в нужном составе .

1.4 Методологии проектирования, используемые в CASE–средствах

CASE-средства являются результатом естественного эволюционного развития отрасли инструментальных (или технологических) средств. CASE-технологии начали развиваться с целью преодоления ограничений методологии структурного программирования.

Эта методология, несмотря на формализацию в составлении программ, характеризуется все же сложностью понимания, большой трудоемкостью и стоимостью использования, трудностью внесения изменений в проектные спецификации. Заложенные в ней принципы позволили развивать эту методологию и повысить е эффективность за счет автоматизации наиболее рутинних этапов (рис. 1.1).

Основными стандартами методологий, реализованных в CASE-средствах, являются:

SADT (Structured Analysis and Design Technique) - методология структурного анализа и проектирования. Основана на понятиях функционального моделирования. Отражает такие системные характеристики, как управление, обратная связь и исполнитель;

IDEF0 (Integrated Definition Function Modeling) - методология функционального моделирования. Используется для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальных объектов, преобразуемые этими функциями. Является подмножеством методологии SADT;

DFD(DataFlow Diagram) - методология моделирования потоков данных.

Рисунок 1.1 – Сравнение традиционной разработки и разработки с использованием CASE-технологий

Следующие стандарты методологий применяются для описания обмена данными между рабочими процессами:

IDEF1 применяется для построения информационной модели, отображающей структуру и содержание информационных потоков, необходимых для поддержки функций системы;

IDEF2 позволяет построить динамическую модель меняющихся во времени поведения функций, информации и ресурсов системы;

IDEF3- методология моделирования потоков работ. Является более детальной по отношению к IDEF0 и DFD. Позволяет рассмотреть конкретный процесс с учетом последовательности выполняемых операций. С помощью IDEF3 описываются сценарий и последовательность операций для каждого процесса;

IDEF1X (IDEF1 Extended) - методология описания данных. Применяется для построения баз данных. Относится к типу методологий «Сущность-связь» (ER - Entity-Relationship) и, как правило, используется для моделирования реляционных баз данных, имеющих отношение к рассматриваемой системе;

IDEF4 - объектно-ориентированная методология. Отражает взаимодействие объектов. Позволяет наглядно отображать структуру объектов и заложенные принципы их взаимодействия. Удобна для создания программных продуктов на объектно-ориентированных языках;

IDEF5- методология онтологического исследования сложных систем. С помощью методологии IDEF5 онтология системы может быть описана при помощи определенного словаря терминов и правил, на основании которых могут быть сформированы достоверные утверждения о состоянии рассматриваемой системы в некоторый момент времени;

ARIS - описывает бизнес-процесс в виде потока последовательно выполняемых работ;

UML - (Unified Modeling Language) унифицированный язык моделирования, основанный на объектно-ориентированном подходе. UML позволяют описать статическую структуру системы и ее динамическое поведение в соответствующих нотациях.

В CASE-средствах широко используются методологии структурного и объектно-ориентированного проектирования. Структурное проектирование основано на алгоритмической декомпозиции, а объектно-ориентированное проектирование – на объектно-ориентированной декомпозиции. Алгоритмическая декомпозиция позволяет определить порядок происходящих событий. Объектно-ориентированная декомпозиция позволяет определить иерархию классов объектов, их методы и свойства. CASE-средства, поддерживающие объектно-ориентированное проектирование используют методологию RUP (Rational Unified Process) и нотации языка UML.

1.5 Методология CASE-средств объектно-ориентированного проектирования

В объектно-ориентированном подходе основная категория объектной модели – класс, объединяет в себе на элементарном уровне, как данные, так и операции, которые над ними выполняются (методы). Именно с этой точки зрения изменения, связанные с переходом от структурного к объектно-ориентированному подходу, являются наиболее заметными. Разделение процессов и данных преодолено, однако остается проблема преодоления сложности системы, которая решается путем использования механизма компонентов.

Данные по сравнению с процессами являются более стабильной и относительно редко изменяющейся частью системы. Отсюда следует главное достоинство объектно-ориентированного подхода, которое Гради Буч сформулировал следующим образом: объектно-ориентированные системы более открыты и легче поддаются внесению изменений, поскольку их конструкция базируется на устойчивых формах. Это дает возможность системе развиваться постепенно и не приводит к полной ее переработке даже в случае существенных изменений исходных требований.

Буч отмечает также ряд следующих преимуществ объектно-ориентированного подхода .

1. Объектная декомпозиция дает возможность создавать программные системы меньшего размера путем использования общих механизмов, обеспечивающих необходимую экономию выразительных средств. Использование объектного подхода существенно повышает уровень унификации разработки и пригодность для повторного использования не только программ, но и проектов, что в конце концов ведет к созданию среды разработки и переходу к сборочному созданию ПО. Системы зачастую получаются более компактными, чем их структурные эквиваленты, что означает не только уменьшение объема программного кода, но и удешевление проекта за счет использования предыдущих разработок.

2. Объектная декомпозиция уменьшает риск создания сложных систем ПО, так как она предполагает эволюционный путь развития системы на базе относительно небольших подсистем. Процесс интеграции системы растягивается на все время разработки, а не превращается в единовременное событие.

3. Объектная модель вполне естественна, поскольку в первую очередь ориентирована на человеческое восприятие мира, а не на компьютерную реализацию.

4. Объектная модель позволяет в полной мере использовать выразительные возможности объектных и объектно-ориентированных языков программирования.

К недостаткам объектно-ориентированного подхода относятся некоторое снижение производительности функционирования ПО и высокие начальные затраты. Объектная декомпозиция существенно отличается от функциональной, поэтому переход на новую технологию связан как с преодолением психологических трудностей, так и дополнительными финансовыми затратами. Безусловно, объектно-ориентированная модель наиболее адекватно отражает реальный мир, представляющий собой совокупность взаимодействующих (посредством обмена сообщениями) объектов. Но на практике в настоящий момент продолжается формирование стандарта языка UML для объектно-ориентированного моделирования, и количество CASE-средств, поддерживающих объектно-ориентированный подход, невелико по сравнению с аналогичными средствами, поддерживающими структурный подход.

Кроме того, диаграммы, отражающие специфику объектного подхода (диаграммы классов и т.п.), гораздо менее наглядны и плохо понимаемы непрофессионалами. Поэтому одна из главных целей внедрения CASE-технологии, а именно снабжение всех участников проекта (в том числе и заказчика) общим языком «для передачи понимания», обеспечивается на сегодняшний день только структурными методами.

При переходе от структурного подхода к объектному, как при всякой смене технологии, необходимо вкладывать деньги в приобретение новых инструментальных средств. Здесь следует учесть и расходы на обучение (овладение методом, инструментальными средствами и языком программирования). Для некоторых организаций эти обстоятельства могут стать серьезными препятствиями. Объектно-ориентированный подход не дает немедленной отдачи. Эффект от его применения начинает сказываться после разработки двух-трех проектов и накопления повторно используемых компонентов, отражающих типовые проектные решения в данной области. Переход организации на объектно-ориентированную технологию - это смена мировоззрения, а не просто изучение новых CASE-средств и языков программирования .

Очевидно, что в конкретном проекте декомпозировать сложную систему одновременно двумя способами невозможно. Можно начать декомпозицию каким-либо одним способом, а затем, используя полученные результаты, попытаться рассмотреть систему с другой точки зрения. Теперь перейдем к рассмотрению взаимосвязи между структурным и объектно-ориентированным подходами. Основой взаимосвязи является общность ряда категорий и понятий обоих подходов (процесс и вариант использования, сущность и класс и др.). Эта взаимосвязь может проявляться в различных формах. Так, одним из возможных подходов является использование структурного анализа как основы для объектно-ориентированного проектирования. Такой подход целесообразен ввиду широкого распространения CASE-средств, поддерживающих структурный анализ. Структурный анализ продолжается до момента, при котором диаграммы потоков данных начинают отражать не только предметную область, но и систему ПО.

После выполнения структурного анализа и построения диаграмм потоков данных вместе со структурами данных и другими результатами анализа можно различными способами приступить к определению классов и объектов. Так, если взять какую-либо отдельную диаграмму, то кандидатами в объекты могут быть внешние сущности и накопители данных, а кандидатами в классы - потоки данных.

Другой формой проявления взаимосвязи можно считать интеграцию объектной и реляционной технологий. Реляционные СУБД являются на сегодняшний день основным средством реализации крупномасштабных баз данных и хранилищ данных. Причины этого очевидны: реляционная технология используется достаточно долго, освоена огромным количеством пользователей и разработчиков, стала промышленным стандартом, в нее вложены значительные средства и создано множество корпоративных БД в самых различных отраслях, реляционная модель проста и имеет строгое математическое основание; существует большое разнообразие промышленных средств проектирования, реализации и эксплуатации реляционных БД. Вследствие этого реляционные БД в основном используются для хранения и поиска объектов в так называемых объектно-реляционных системах. Объектно-ориентированное проектирование имеет точки соприкосновения с реляционным проектированием. Например, как было отмечено выше, классы в объектной модели могут некоторым образом соответствовать сущностям (в качестве упражнения можно предложить детально проанализировать все сходства и различия диаграмм «сущность-связь» и диаграмм классов). Как правило, такое соответствие имеет место только на ранней стадии разработки системы - стадии формирования требований. В дальнейшем, разумеется, цели объектно-ориентированного проектирования (адекватное моделирование предметной области в терминах взаимодействия объектов) и разработки реляционной БД (нормализация данных) расходятся. Таким образом, единственно возможным средством преодоления данного пробела является определение соответствия между объектно-ориентированной и реляционной технологиями, которое в основном сводится к отображению диаграмм классов и диаграмм «сущность – связь» реляционной модели. Одним из примеров практической реализации взаимосвязи между структурным и объектно-ориентированным подходом является программный интерфейс (мост) между структурным CASE-средством Silverrun и объектно-ориентированным CASE-средством Rational Rose, разработанный российской компанией "Аргуссофт" .Это ПО создает диаграммы классов Rational Rose на основе RDM-модели (Relational Data Model - реляционная модель данных) Silverrun и наоборот. Аналогичные интерфейсы существуют также между CASE-средствами ERwin (с одной стороны), Rational Rose и Paradigm Plus (с другой стороны).

1.6 Методология CASE-средств структурного проектирования

Сущность структурного подхода к разработке информационных систем заключается в ее декомпозиции (разбиении) на автоматизируемые функции. Автоматизируемая система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы «снизу-вверх» от отдельных задач ко всей системе целостность теряется, возникают проблемы при информационной стыковке отдельных компонентов.

Все наиболее распространенные методологии структурного подхода базируются на ряде общих принципов. В качестве основных принципов используются:

    принцип декомпозиции - принцип решения сложных проблем путем их разбиения на множество более мелких и независимых задач, легких для понимания и решения;

    принцип иерархического упорядочивания - принцип организации составных частей проблемы в иерархические древовидные структуры с добавлением новых деталей на каждом уровне.

    принцип абстрагирования - заключается в выделении существенных аспектов системы и отвлечения от несущественных;

    принцип формализации –- заключается в необходимости строгого методического подхода к решению проблемы;

    принцип непротиворечивости - заключается в обоснованности и согласованности использования элементов системы;

    принцип структурирования данных - заключается в том, что данные должны быть структурированы и иерархически организованы.

В структурном анализе используются в основном две группы средств, иллюстрирующих функции, выполняемые системой и отношения между данными.

Каждой группе средств соответствуют определенные виды моделей (диаграмм), наиболее распространенными из них являются следующие :

    SADT (Structured Analysis and Design Technique) модели и соответствующие функциональные диаграммы;

    DFD (Data Flow Diagrams) диаграммы потоков данных;

    ERD (Entity-Relationship Diagrams) диаграммы «сущность-связь».

На стадии проектирования информационной системы (ИС) модели усложняются, уточняются и дополняются диаграммами, отражающими структуру и архитектуру программного обеспечения, структурные схемы программ и диаграмм экранных форм. Перечисленные модели в совокупности дают полное описание ИС независимо от того, является ли она существующей или вновь разрабатываемой. Состав диаграмм в каждом конкретном случае зависит от необходимой полноты описания системы.

Характеристики современных операционных систем

Год за годом происходит эволюция структуры и возможностей операцион­ных систем. В последнее время в состав новых операционных систем и новых версий уже существующих операционных систем вошли некоторые структурные элементы, которые внесли большие изменения в природу этих систем. Совре­менные операционные системы отвечают требованиям постоянно развивающего­ся аппаратного и программного обеспечения. Они способны управлять работой многопроцессорных систем, работающих быстрее обычных машин, высокоскоро­стных сетевых приспособлений и разнообразных запоминающих устройств, чис­ло которых постоянно увеличивается. Из приложений, оказавших влияние на устройство операционных систем, следует отметить мультимедийные приложе­ния, средства доступа к Internet, а также модель клиент/сервер.

Неуклонный рост требований к операционным системам приводит не только к улучшению их архитектуры, но и к возникновению новых способов их органи­зации. В экспериментальных и коммерческих операционных системах были оп­робованы самые разнообразные подходы и структурные элементы, большинство из которых можно объединить в следующие категории.

· Архитектура микроядра.

· Многопоточность.

· Симметричная многопроцессорность.

· Распределенные операционные системы.

· Объектно-ориентированный дизайн.

Отличительной особенностью большинства операционных систем на сего­дняшний день является большое монолитное ядро. Ядро операционной системы обеспечивает большинство ее возможностей, включая планирование, работу с файловой системой, сетевые функции, работу драйверов различных устройств, управление памятью и многие другие. Обычно монолитное ядро реализуется как единый процесс, все элементы которого используют одно и то же адресное про­странство. В архитектуре микроядра ядру отводится лишь несколько самых важных функций, в число которых входят работа с адресными пространствами, обеспечение взаимодействия между процессами (interprocess communication - IPC) и основное планирование. Работу других сервисов операционной системы обеспечивают процессы, которые иногда называют серверами. Эти процессы за­пускаются в пользовательском режиме и микроядро работает с ними так же, как и с другими приложениями. Такой подход позволяет разделить задачу разработ­ки операционной системы на разработку ядра и разработку сервера. Серверы можно настраивать для требований конкретных приложений или среды. Выде­ление в структуре системы микроядра упрощает реализацию системы, обеспечи­вает ее гибкость, а также хорошо вписывается в распределенную среду. Факти­чески микроядро взаимодействует с локальным и удаленным сервером по одной и той же схеме, что упрощает построение распределенных систем.

Многопоточность (multithreading) - это технология, при которой процесс, выполняющий приложение, разделяется на несколько одновременно выполняе­мых потоков. Ниже приведены основные различия между потоком и процессом.

· Поток. Диспетчеризуемая единица работы, включающая контекст процессо­ра (куда входит содержимое программного счетчика и указателя вершины стека), а также свою собственную область стека (для организации вызова подпрограмм и хранения локальных данных). Команды потока выполняют­ ся последовательно; поток может быть прерван при переключении процес­сора на обработку другого потока 4 .Процесс. Набор из одного или нескольких потоков, а также связанных с этими потоками системных ресурсов (таких, как область памяти, в которую входят код и данные, открытые файлы, различные устройства). Эта кон­цепция очень близка концепции выполняющейся программы. Разбивая приложение на несколько потоков, программист получает все преимущества модульности приложения и возможность управления связанными с прило­жением временными событиями.

Многопоточность оказывается весьма полезной для приложений, выпол­няющих несколько независимых заданий, которые не требуют последовательного исполнения. В качестве примера такого приложения можно привести сервер ба­зы данных, который одновременно принимает и обрабатывает несколько запро­сов клиентов. Если в пределах одного и того же процесса обрабатываются не­сколько потоков, то при переключении между различными потоками непроизво­дительный расход ресурсов процессора меньше, чем при переключении между разными процессами. Кроме того, потоки полезны при описанном в последующих главах структурировании процессов, которые являются частью ядра опера­ционной системы.

До недавнего времени все персональные компьютеры, рассчитанные на одного пользователя, и рабочие станции содержали один виртуальный микропро­цессор общего назначения. В результате постоянного повышения требований к производительности и понижения стоимости микропроцессоров производители перешли к выпуску компьютеров с несколькими процессорами. Для повышения эффективности и надежности используется технология симметричной многопро­цессорности (symmetric multiprocessing - SMP). Этот термин относится к архи­тектуре аппаратного обеспечения компьютера, а также к образу действий опера­ционной системы, соответствующему этой архитектурной особенности. Симмет­ричную многопроцессорность можно определить как автономную компьютерную систему со следующими характеристиками.

1. В системе имеется несколько процессоров.

2. Эти процессоры, соединенные между собой коммуникационной шиной или какой-нибудь другой схемой, совместно используют одну и ту же основную память и одни и те же устройства ввода-вывода.

3. Все процессоры могут выполнять одни и те же функции (отсюда название симметричная обработка).

Операционная система, работающая в системе с симметричной многопро­цессорностью, распределяет процессы или потоки между всеми процессорами. У многопроцессорных систем есть несколько потенциальных преимуществ по срав­нению с однопроцессорными, в число которых входят следующие.

· Производительность . Если задание, которое должен выполнить компьютер, можно организовать так, что какие-то части этого задания будут выпол­няться параллельно, это приведет к повышению производительности по сравнению с однопроцессорной системой с процессором того же типа. Сформулированное выше положение проиллюстрировано на рис. 2.12. В много­ задачном режиме в один и тот же момент времени может выполняться только один процесс, тогда как остальные процессы вынуждены ожидать своей очереди. В многопроцессорной системе могут выполняться одновременно несколько процессов, причем каждый из них будет работать на от­ дельном процессоре.

· Надежность. При симметричной мультипроцессорной обработке отказ одного из процессоров не приведет к остановке машины, потому что все процессоры могут выполнять одни и те же функции. После такого сбоя система продолжит свою работу, хотя производительность ее несколько снизится.

· Наращивание . Добавляя в систему дополнительные процессоры, пользователь может повысить ее производительность.

· Масштабируемость. Производители могут предлагать свои продукты в раз­личных, различающихся ценой и производительностью, конфигурациях, предназначенных для работы с разным количеством процессоров.

Важно отметить, что перечисленные выше преимущества являются скорее потенциальными, чем гарантированными. Чтобы надлежащим образом реализо­вать потенциал, заключенный в многопроцессорных вычислительных системах, операционная система должна предоставлять адекватный набор инструментов и возможностей

Рис. 2.12. Многозадачность и многопроцессорность

Часто можно встретить совместное обсуждение многопоточности и многопроцессорности, однако эти два понятия являются независимыми. Многопоточность - полезная концепция для структурирования процессов приложений и ядра даже на машине с одним процессором. С другой стороны, многопроцессор­ная система может обладать преимуществами по сравнению с однопроцессорной, даже если процессы не разделены на несколько потоков, потому что в такой сис­теме можно запустить несколько процессов одновременно. Однако обе эти воз­можности хорошо согласуются между собой, а их совместное использование мо­жет дать заметный эффект.

Заманчивой особенностью многопроцессорных систем является то, что наличие нескольких процессоров прозрачно для пользователя -за распреде­ление потоков между процессорами и за синхронизацию разных процессов отвечает операционная система. В этой книге рассматриваются механизмы планирования и синхронизации, которые используются, чтобы все процессы и процессоры были видны пользователю в виде единой системы. Другая за­дача более высокого уровня - представление в виде единой системы класте­ра из нескольких отдельных компьютеров. В этом случае мы имеем дело с набором компьютеров, каждый из которых обладает своей собственной ос­новной и вторичной памятью и своими модулями ввода-вывода. Распреде­ленная операционная система создает видимость единого пространства ос­новной и вторичной памяти, а также единой файловой системы. Хотя попу­лярность кластеров неуклонно возрастает и на рынке появляется все больше кластерных продуктов, современные распределенные операционные системы все еще отстают в развитии от одно- и многопроцессорных систем. С подоб­ными системами вы познакомитесь в шестой части книги.

Одним из последних новшеств в устройстве операционных систем стало использование объектно-ориентированных технологий. Объектно-ориентированный дизайн помогает навести порядок в процессе добавления к основному небольшому ядру дополнительных модулей. На уровне операционной системы объектно-ориентированная структура позволяет программистам настраивать операционную систему, не нарушая ее целостности. Кроме того, этот подход облегчает разработку распределенных инст­рументов и полноценных распределенных операционных систем.

CASE-средства проектирования информационных систем

В условиях современности сложность создания информационных систем очень высока. Поэтому при проектировании ИС в настоящее время стало широко использоваться CASE-технология.

CASE-технология – это программный комплекс, автомати­зирующий весь технологический процесс анализа, проектирования, разработки и сопровождения сложных программных средств.

Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования ИС: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл ПО.

Наиболее трудоемкими этапами разработки ИС являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают высокое качество принимаемых технических решений и подготовку проектной документации. При этом большую роль играют графические средства моделирования предметной области, которые позволяют разработчикам в наглядном виде изучать существующую ИС, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.

Интегрированные CASE-средства обладают следующими характерными особенностями :

· обеспечение управления процессом разработки ИС;

· использование специальным образом организованного хранилища проектных метаданных (репозитория).

Интегрированные CASE-средства содержат следующие компоненты:

· графические средства анализа и проектирования, используемые для описания и документирования ИС;

· средства разработки приложений, включая языки программирования и генераторы кодов;

· репозиторий, который обеспечивает хранение версий разрабатываемого проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;

· средства управления процессом разработки ИС;

· средства документирования;

· средства тестирования;

· средства реинжиниринга, обеспечивающие анализ программных кодов и схем баз данных и формирование на их основе различных моделей и проектных спецификаций.

Все современные CASE-средства делятся на две группы. Первую группу организуют средства встроенные в систему реализации, в которых все решения по проектированию и реализации привязаны к выбранной системе управления базами данных. Вторую группу организуют средства независимые от системы реализации, в которых все решения по проектированию ориентированы на унификацию начальных этапов жизненного цикла и средств их документирования. Данные средства обеспечивают большую гибкость в выборе средств реализации.

Основное достоинство CASE-технологии – поддержка коллективной работы над проектом за счет возможности работы в локальной сети, экспорта и импорта отдельных фрагментов проекта между разработчиками, организованного управления проектом.

В качестве этапов создания программных продуктов для информационных систем можно выделить следующие:

1. Определяется среда функционирования. На этом этапе определяются набор процессов жизненного цикла ИС, определяется область примененияИС, определяется размер поддерживаемых приложений, т.е. задается ограничения на такие величины, как количество строк программного кода, размер базы данных, количество элементов данных, количество объектов управления и т.д.

2. Производится построение диаграмм и графический анализ. На этом этапе строятся диаграммы, устанавливающие связь с источниками информации и потребителями, определяющие процессы преобразования данных и места их хранения.

3. Определяются спецификации и требования, предъявляемые к системе (вид интерфейса, тип данных, структура системы, качества, производительности, технические средства, общие затраты и т.д.).

4. Выполняется моделирование данных, т.е. вводится информация, описывающая элементы данных системы и их отношения.

5. Выполняетсямоделирование процессов, т.е. вводится информация, описывающая процессы системы и их отношения.

Министерство экономического Министерство науки и образования развития Российской Федерации Российской Федерации

Государственный университет –

Высшая школа экономики

Факультет бизнес информатики

Реферат по дисциплине

«Методология программной инженерии »

«CASE технологии разработки программных систем ».

Выполнил:

Гладышев И.А.

171м, УРПО

Проверил:

Авдошин С.М.

Москва 2008 г.

Введение

1. CASE средство: определения и общая характеристика.

2. Применения CASE технологий: преимущества и недостатки.

3. Внедрение CASE-технологий.

4. Примеры CASE-средств и их характеристики.

4.3 Vantage Team Builder

4.4 Локальные средства (ERwin, BPwin, S-Designor)

4.5 Объектно-ориентированные CASE-средства (Rational Rose)

4.6 Средства конфигурационного управления
4.7 Средства документирования
4.8 Средства тестирования

Заключение

Литература.

Введение

Цель моего реферата – рассмотреть технологии разработки программных систем на основе CASE средств. В 70-х и 80-х годах при разработке ИС достаточно широко применялась структурная методология, предоставляющая в распоряжение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. На протяжении всей истории программирования программные проекты все более и более усложнялись, объем работ стремительно увеличивался, возникла потребность в универсальных средствах, которые могли бы помочь как-то структурировать создание ПО. Традиционные языки программирования в силу малой наглядности, избыточности и многословия утрачивали свою эффективность и в 70-х и 80-х годах при разработке программных систем достаточно широко применялась структурная методология. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы обсуждать и закреплять понимание основных технических решений. Все шло к появлению программно-технологических средств специального класса.

1. CASE средство: определения и общая характеристика.

Аббревиатура CASE расшифровывается как Computer Aided Software Engineering. Этот термин широко используется в настоящее время. На этапе появления подобных средств, термин CASE употреблялся лишь в отношении автоматизации разработки программного обеспечения. Сегодня CASE средства подразкмевают процесс разработки сложных ИС в целом: создание и сопровождение ИС, анализ, формулировка требований, проектирование прикладного ПО и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. Таким образом, CASE-технологии образуют целую среду разработки ИС. Итак, CASE-технология представляет собой методологию проектирования программных систем, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методологиях структурного или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств. Главные составляющие CASE-продукта таковы:

    методология (Method Diagrams) , которая задает единый графический язык и правила работы с ним.

    графические редакторы (Graphic Editors) , которые помогают рисовать диаграммы; возникли с распространением PC и GUI, так называемых «upper case технологий

    генератор : по графическому представлению модели можно сгенерировать исходный код для различных платформ (так называемая low case часть CASE-технологии).

    репозиторий , своеобразная база данных для хранения результатов работы программистов.

2. Применения CASE технологий: преимущества и недостатки.

Различные статистические обзоры свидетельствуют сегодня об эффективности применения CASE средств в процессе разработки программных систем. Однако % неудач все же существует и довольно велик. Разумеется, существуют свои недостатки применения технологий, значимыми являются недостатки со стороны аспектов бизнеса:

    CASE-средства не обязательно дают немедленный эффект; он может быть получен только спустя какое-то время;

    реальные затраты на внедрение CASE-средств обычно намного превышают затраты на их приобретение;

    CASE-средства обеспечивают возможности для получения существенной выгоды только после успешного завершения процесса их внедрения.

Ввиду разнообразной природы CASE-средств было бы ошибочно делать какие-либо безоговорочные утверждения относительно реального удовлетворения тех или иных ожиданий от их внедрения. Можно перечислить следующие факторы, усложняющие определение возможного эффекта от использования CASE-средств:

    широкое разнообразие качества и возможностей CASE-средств;

    относительно небольшое время использования CASE-средств в различных организациях и недостаток опыта их применения;

    широкое разнообразие в практике внедрения различных организаций;

    отсутствие детальных метрик и данных для уже выполненных и текущих проектов;

    широкий диапазон предметных областей проектов;

    различная степень интеграции CASE-средств в различных проектах.

Вокруг определения эффективности использования CASE технологий бытует два мнения: одни считают, что реальная выгода от использования некоторых типов CASE-средств может быть получена только после одно- двухлетнего опыта, другие полагают, что воздействие может реально проявиться в фазе эксплуатации жизненного цикла ИС, когда технологические улучшения могут привести к снижению эксплуатационных затрат. Однако существует ряд признаков организации, с отсутствием хотя бы одного из которых внедрение CASE-средств скорее всего закончится неудачно:

    Технология: понимание ограниченности существующих возможностей и способность принять новую технологию;

    Культура: готовность к внедрению новых процессов и взаимоотношений между разработчиками и пользователями;

    Управление: четкое руководство и организованность по отношению к наиболее важным этапам и процессам внедрения.

    высокий уровень технологической поддержки процессов разработки и сопровождения ПО;

    положительное воздействие на некоторые или все из перечисленных факторов: производительность, качество продукции, соблюдение стандартов, документирование;

    приемлемый уровень отдачи от инвестиций в CASE-средства.

3. Внедрение CASE-технологий.

Термин "внедрение" используется в данном подзаголовке в достаточно широком смысле и включает в себя действия от оценки первоначальных потребностей до полномасштабного использования CASE-технологий в различных подразделениях организации-пользователя. Процесс внедрения CASE-средств состоит из следующих этапов:

    определение потребностей в CASE-средствах;

    оценка и выбор CASE-средств;

    выполнение пилотного проекта;

    практическое внедрение CASE-средств.

Процесс успешного внедрения CASE-средств не ограничивается только их использованием. На самом деле он охватывает планирование и реализацию множества технических, организационных, структурных процессов, изменений в общей культуре организации, и основан на четком понимании возможностей CASE-средств. На способ внедрения CASE-средств может повлиять специфика конкретной ситуации. Например, если заказчик предпочитает конкретное средство, или оно оговаривается требованиями контракта, этапы внедрения должны соответствовать такому предопределенному выбору. В иных ситуациях относительная простота или сложность средства, степень согласованности или конфликтности с существующими в организации процессами, требуемая степень интеграции с другими средствами, опыт и квалификация пользователей могут привести к внесению соответствующих корректив в процесс внедрения.

4. Примеры CASE-средств и их характеристики.

4.1 Silverrun

CASE-средство Silverrun американской фирмы Computer Systems Advisers, Inc. используется для анализа и проектирования ИС бизнес-класса. Оно применимо для поддержки любой методологии, основанной на раздельном построении функциональной и информационной моделей. Silverrun имеет модульную структуру и состоит из четырех модулей, каждый из которых является самостоятельным продуктом и может приобретаться и использоваться без связи с остальными модулями: модуль построения моделей бизнес-процессов, модуль концептуального моделирования данных, модуль реляционного моделирования и менеджер репозитория рабочей группы. Платой за высокую гибкость и разнообразие изобразительных средств построения моделей является такой недостаток Silverrun, как отсутствие жесткого взаимного контроля между компонентами различных моделей

Средство разработки приложений JAM - продукт американской фирмы JYACC. Основной чертой JAM является его соответствие методологии RAD, поскольку он позволяет достаточно быстро реализовать цикл разработки приложения, заключающийся в формировании очередной версии прототипа приложения с учетом требований, выявленных на предыдущем шаге, и предъявить его пользователю. JAM имеет модульную структуру и состоит из следующих компонент:

    Ядро системы;

    JAM/DBi - специализированные модули интерфейса к СУБД (JAM/DBi-Oracle, JAM/DBi-Informix, JAM/DBi-ODBC и т.д.);

    JAM/RW - модуль генератора отчетов;

    JAM/CASEi - специализированные модули интерфейса к CASE-средствам (JAM/CASE-TeamWork, JAM/CASE-Innovator и т.д.);

    JAM/TPi - специализированные модули интерфейса к менеджерам транзакций (например, JAM/TPi-Server TUXEDO и т.д.);

    Jterm - специализированный эмулятор X-терминала.

Ядро системы (собственно, сам JAM) является законченным продуктом и может самостоятельно использоваться для разработки приложений. Все остальные модули являются дополнительными и самостоятельно использоваться не могут. При использовании JAM разработка внешнего интерфейса приложения представляет собой визуальное проектирование и сводится к созданию экранных форм путем размещения на них интерфейсных конструкций и определению экранных полей ввода/вывода информации.

4.3 Vantage Team Builder

Vantage Team Builder представляет собой интегрированный программный продукт, ориентированный на реализацию каскадной модели ЖЦ ПО и поддержку полного ЖЦ ПО. Наличие универсальной системы генерации кода, основанной на специфицированных средствах доступа к репозиторию проекта, позволяет поддерживать высокий уровень исполнения проектной дисциплины разработчиками: жесткий порядок формирования моделей; жесткая структура и содержимое документации; автоматическая генерация исходных кодов программ и т.д. - все это обеспечивает повышение качества и надежности разрабатываемых ИС.

4.4 Локальные средства (ERwin, BPwin, S-Designor)

ERwin - средство концептуального моделирования БД, использующее методологию IDEF1X. ERwin реализует проектирование схемы БД, генерацию ее описания на языке целевой СУБД и реинжиниринг существующей БД. ERwin выпускается в нескольких различных конфигурациях, ориентированных на наиболее распространенные средства разработки приложений 4GL. Для ряда средств разработки приложений (PowerBuilder, SQLWindows, Delphi, Visual Basic) выполняется генерация форм и прототипов приложений. BPwin - средство функционального моделирования, реализующее методологию IDEF0. S-Designor представляет собой CASE-средство для проектирования реляционных баз данных. По своим функциональным возможностям и стоимости он близок к CASE-средству ERwin, отличаясь внешне используемой на диаграммах нотацией. S-Designor реализует стандартную методологию моделирования данных и генерирует описание БД для таких СУБД, как ORACLE, Informix, Ingres, Sybase, DB/2, Microsoft SQL Server и др.

4.5 Объектно-ориентированные CASE-средства (Rational Rose)

Rational Rose - CASE-средство фирмы Rational Software Corporation - предназначено для автоматизации этапов анализа и проектирования ПО, а также для генерации кодов на различных языках и выпуска проектной документации. Rational Rose использует синтез-методологию объектно-ориентированного анализа и проектирования, основанную на подходах трех ведущих специалистов в данной области: Буча, Рамбо и Джекобсона. Разработанная ими универсальная нотация для моделирования объектов (UML - Unified Modeling Language) претендует на роль стандарта в области объектно-ориентированного анализа и проектирования. Конкретный вариант Rational Rose определяется языком, на котором генерируются коды программ (C++, Smalltalk, PowerBuilder, Ada, SQLWindows и ObjectPro). Основной вариант - Rational Rose/C++ - позволяет разрабатывать проектную документацию в виде диаграмм и спецификаций, а также генерировать программные коды на С++. Кроме того, Rational Rose содержит средства реинжиниринга программ, обеспечивающие повторное использование программных компонент в новых проектах.

4.6 Средства конфигурационного управления

Цель конфигурационного управления - обеспечить управляемость и контролируемость процессов разработки и сопровождения ПО. Для этого необходима точная и достоверная информация о состоянии ПО и его компонент в каждый момент времени, а также о всех предполагаемых и выполненных изменениях. Для решения задач КУ применяются методы и средства обеспечивающие идентификацию состояния компонент, учет номенклатуры всех компонент и модификаций системы в целом, контроль за вносимыми изменениями в компоненты, структуру системы и ее функции, а также координированное управление развитием функций и улучшением характеристик системы. Наиболее распространенным средством КУ является PVCS фирмы Intersolv (США), включающее ряд самостоятельных продуктов: PVCS Version Manager, PVCS Tracker, PVCS Configuration Builder и PVCS Notify.

4.7 Средства документирования

Для создания документации в процессе разработки ИС используются разнообразные средства формирования отчетов, а также компоненты издательских систем. Обычно средства документирования встроены в конкретные CASE-средства. Исключением являются некоторые пакеты, предоставляющие дополнительный сервис при документировании. Из них наиболее активно используется SoDA (Software Document Аutomation).

Продукт предназначен для автоматизации разработки проектной документации на всех фазах ЖЦ ПО. Он позволяет автоматически извлекать разнообразную информацию, получаемую на разных стадиях разработки проекта, и включать ее в выходные документы. При этом контролируется соответствие документации проекту, взаимосвязь документов, обеспечивается их своевременное обновление. Результирующая документация автоматически формируется из множества источников, число которых не ограничено.

4.8 Средства тестирования

Под тестированием понимается процесс исполнения программы с целью обнаружения ошибок. Регрессионное тестирование - это тестирование, проводимое после усовершенствования функций программы или внесения в нее изменений. Одно из наиболее развитых средств тестирования Quality Works представляет собой интегрированную многоплатформенную среду для разработки автоматизированных тестов любого уровня, включая тесты регрессии для приложений с графическим интерфейсом пользователя. Quality Works позволяет начинать тестирование на любой фазе ЖЦ, планировать и управлять процессом тестирования, отображать изменения в приложении и повторно использовать тесты для более чем 25 различных платформ.

Заключение

В работе были рассмотрены технологии разработки программных систем на основе CASE технологий. Подробно разобрано определение такого широкого понятия как CASE средство, определены главные составляющие CASE продукта. Также в работе мной рассматривались основные преимущества и возможные недостатки в процессе применения CASE средств в разработке программных систем, как с точки зрения технических, так и со стороны экономических аспектов. Далее были перечислены примеры CASE технологий и даны их характеристики.

Тенденции развития информационных технологий сегодня диктуют новый уровень сложности востребованных информационных систем. Крупные проекты ИС сегодня характеризуются аспектами, требующими комплицитных методов моделирования. Такого рода разработка программных систем не возможна в полной мере своей эффективности без использования CASE средств. Современные CASE-инструменты охватывают обширную область поддержки многочисленных технологий проектирования ИС: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл ПО.

Литература.

    А.М. Вендров: CASE-технологии. Современные методы и средства проектирования информационных систем
    М.: Финансы и статистика, 1998. – 176 с.: илл

    Калянов Г.Н. CASE. Структурный системный анализ (автоматизация и применение). М., "Лори", 1998.

    Новоженов Ю.В. Объектно-ориентированные технологии разработки сложных программных систем. М., 1997

    Панащук С.А. Разработка информационных систем с использованием CASE-системы Silverrun. "СУБД", 1997.

    Горчинская О.Ю. Designer/2000 - новое поколение CASE-продуктов фирмы ORACLE. "СУБД", 1996.

    Горин С.В., Тандоев А.Ю. Применение CASE-средства Erwin 2.0 для информационного моделирования в системах обработки данных. "СУБД", 1999.