Аккумуляторная li литий ионный аккумулятор. Литий-ионные (Li-ion) аккумуляторы и батареи

Литий-ионные и литий-полимерные аккумуляторы

Инженерная мысль непрерывно развивается: ее стимулируют постоянно возникающие проблемы, требующие для своего решения разработки новых технологий. В свое время на смену никель-кадмиевым (NiCd) аккумуляторам пришли никель-металлгидридные (NiMH), а сейчас место литий-ионных (Li-ion) пытаются занять литий-полимерные (Li-pol) аккумуляторы. NiMH аккумуляторы в какой-то степени потеснили NiCd, но в силу таких неоспоримых достоинств последних, как способность отдавать большой ток, низкая стоимость и длительный срок службы, не смогли обеспечить их полноценной замены. А вот как обстоит дело с литиевыми аккумуляторами? Каковы их особенности и чем отличаются Li-pol аккумуляторы от Li-ion? Попробуем разобраться в этом вопросе.

Как правило, все мы при покупке мобильника или портативного компьютера не задумываемся о том, какой аккумулятор у них внутри и чем вообще различаются эти устройства. И только потом, столкнувшись на практике с потребительскими качествами тех или иных аккумуляторов, начинаем анализировать и выбирать. Тем, кто спешит и желает сразу получить ответ на вопрос, какой аккумулятор является оптимальным для сотового телефона, я отвечу коротко — Li-ion. Дальнейшая информация предназначена для любознательных.

Для начала небольшой экскурс в историю.

Первые эксперименты по созданию литиевых батарей начались в 1912 году, но только спустя шесть десятилетий, в начале 70-х годов, они впервые были внедрены в бытовые устройства. Причем, подчеркну, это были именно батареи. Последовавшие вслед за этим попытки разработать литиевые аккумуляторы (перезаряжающиеся батареи) оказались неудачными из-за проблем, связанных с обеспечением безопасности их эксплуатации. Литий, самый легкий из всех металлов, имеет наибольший электрохимический потенциал и обеспечивает самую большую плотность энергии. Аккумуляторы, использующие литиевые металлические электроды, характеризуются и высоким напряжением, и превосходной емкостью. Но в результате многочисленных исследований в 80-х годах было выяснено, что циклическая работа (заряд — разряд) литиевых аккумуляторов приводит к изменениям на литиевом электроде, в результате которых уменьшается тепловая стабильность и появляется угроза выхода теплового состояния из-под контроля. Когда это происходит, температура элемента быстро приближается к точке плавления лития — и начинается бурная реакция с воспламенением выделяющихся газов. Так, например, большое количество литиевых аккумуляторов для мобильных телефонов, поставленных в Японию в 1991 году, было отозвано после нескольких случаев их воспламенения.

Из-за свойственной литию неустойчивости исследователи обратили свой взор в сторону неметаллических литиевых аккумуляторов на основе ионов лития. Немного проиграв при этом в плотности энергии и приняв некоторые меры предосторожности при заряде и разряде, они получили более безопасные так называемые Li-ion аккумуляторы.

Плотность энергии Li-ion аккумуляторов обычно вдвое превышает плотность стандартных NiCd , а в перспективе, благодаря применению новых активных материалов, предполагается еще больше увеличить ее и достигнуть трехкратного превосходства над NiCd. В дополнение к большой емкости Li-ion аккумулятор при разряде ведет себя аналогично NiCd (форма их разрядных характеристик подобна и отличается лишь напряжением).

На сегодняшний момент существует множество разновидностей Li-ion аккумуляторов, причем можно долго говорить о преимуществах и недостатках того или иного типа, но отличить их по внешнему виду невозможно. Поэтому отметим только те достоинства и недостатки, которые свойственны всем типам этих устройств, и рассмотрим причины, вызвавшие появление на свет литий-полимерных аккумуляторов.

Основные преимущества.

  • Высокая плотность энергии и как следствие большая емкость при тех же самых габаритах по сравнению с аккумуляторами на основе никеля.
  • Низкий саморазряд.
  • Высокое напряжение единичного элемента (3.6 В против 1.2 В у NiCd и NiMH), что упрощает конструкцию — зачастую аккумулятор состоит только из одного элемента. Многие производители сегодня применяют в сотовых телефонов именно такой одноэлементный аккумулятор (вспомните Nokia). Однако, чтобы обеспечить ту же самую мощность, необходимо отдать более высокий ток. А это требует обеспечения низкого внутреннего сопротивления элемента.
  • Низкая стоимость обслуживания (эксплуатационных расходов) - результат отсутствия эффекта памяти, требующего периодических циклов разряда для восстановления емкости.

Недостатки.

Технология изготовления Li-ion аккумуляторов постоянно улучшается. Она обновляется приблизительно каждые шесть месяцев, и понять, как «ведут себя» новые аккумуляторы после длительного хранения, трудно.

Словом, всем был бы Li-ion аккумулятор хорош, если бы не проблемы с обеспечением безопасности его эксплуатации и высокая стоимость. Попытки решения этих проблем и привели к появлению литий-полимерных (Li-pol или Li-polymer) аккумуляторов.

Основное их отличие от Li-ion отражено в названии и заключается в типе используемого электролита. Первоначально, в 70-х годах, применялся сухой твердый полимерный электролит, похожий на пластиковую пленку и не проводящий электрический ток, но допускающий обмен ионами (электрически заряженными атомами или группами атомов). Полимерный электролит фактически заменяет традиционный пористый сепаратор, пропитанный электролитом.

Такая конструкция упрощает процесс производства, характеризуется большей безопасностью и позволяет выпускать тонкие аккумуляторы произвольной формы. К тому же отсутствие жидкого или гелевого электролита исключает возможность воспламенения. Толщина элемента составляет около одного миллиметра, так что разработчики оборудования свободны в выборе формы, очертаний и размеров, вплоть до внедрения его во фрагменты одежды.

Но пока, к сожалению, сухие Li-polymer аккумуляторы обладают недостаточной электропроводностью при комнатной температуре. Внутреннее сопротивление их слишком высоко и не может обеспечить величину тока, необходимую для современных средств связи и электропитания жестких дисков переносных компьютеров. В то же время при нагревании до 60 °C и более электропроводность Li-polymer увеличивается до приемлемого уровня, однако для массового использования это не годится.

Исследователи продолжают разработку Li-polymer аккумуляторов с сухим твердым электролитом, работающим при комнатной температуре. Подобные аккумуляторы, как ожидается, станут коммерчески доступными к 2005 году. Они будут стабильными, допускать 1000 полных циклов заряда-разряда и иметь более высокую плотность энергии, чем сегодняшние Li-ion аккумуляторы

Тем временем некоторые виды Li-polymer аккумуляторов в настоящее время используются в качестве резервных источников питания в жарком климате. Например, часть производителей специально устанавливает нагревающие элементы, поддерживающие благоприятную для аккумулятора температуру.

Вы спросите: как же так? На рынке вовсю продают Li-polymer аккумуляторы, изготовители комплектуют ими телефоны и компьютеры, а мы тут говорим, что для коммерческой эксплуатации они пока не готовы. Все очень просто. В данном случае речь идет об аккумуляторах не с сухим твердым электролитом. Для того чтобы повысить электропроводность небольших Li-polymer аккумуляторов, в них добавляют некоторое количество гелеобразного электролита. И большинство Li-polymer аккумуляторов, используемых сегодня для мобильных телефонов, фактически являются гибридами, поскольку содержат гелеобразный электролит. Правильнее было бы их называть литий-ионными полимерными. Но большинство изготовителей в рекламных целях маркируют их просто как Li-polymer. Остановимся подробнее на этом типе литий-полимерных аккумуляторов, поскольку на данный момент именно они представляют наибольший интерес.

Итак, в чем различие между Li-ion и Li-polymer аккумулятором с добавкой гелеобразного электролита? Хотя характеристики и эффективность обеих систем во многом сходны, уникальность Li-ion полимерного (можно его и так назвать) аккумулятора заключается в том, что в нем все же используется твердый электролит, заменяющий пористый сепаратор. Гелевый электролит добавляется только для увеличения ионной электропроводности.

Технические трудности и задержка в наращивании объемов производства задержали внедрение Li-ion полимерных аккумуляторов. Это вызвано, по мнению некоторых экспертов, желанием инвесторов, вложивших большие деньги в разработку и массовое производство Li-ion аккумуляторов, получить свои инвестиции обратно. Поэтому они и не спешат переходить на новые технологии, хотя при массовом производстве Li-ion полимерные аккумуляторы будут дешевле литий-ионных.

А теперь об особенностях эксплуатации Li-ion и Li-polymer аккумуляторов.

Их основные характеристики очень похожи. О заряде Li-ion аккумуляторов достаточно подробно рассказано в статье . В добавление приведу лишь график (Рис.1) из , иллюстрирующий стадии заряда, и небольшие пояснения к нему.


Время заряда всех Li-ion аккумуляторов при начальном зарядном токе в 1С (численно равном номинальному значению емкости аккумулятора) составляет в среднем 3 часа. Полный заряд достигается при напряжении на аккумуляторе, равном верхнему порогу, и при уменьшении тока заряда до уровня, примерно равного 3% от начального значения. Аккумулятор во время заряда остается холодным. Как видно из графика, процесс заряда состоит из двух стадий. На первой (час с небольшим) напряжение растет при почти постоянном начальном токе заряда в 1С до момента первого достижения верхнего порога напряжения. К этому моменту аккумулятор заряжается примерно на 70% от своей емкости. В начале второго этапа напряжение остается почти постоянным, а ток уменьшается до тех пор, пока не достигнет вышеуказанных 3%. После этого заряд полностью прекращается.

Если требуется поддерживать аккумулятор все время в заряженном состоянии, то подзаряд рекомендуется проводить через 500 часов, или 20 дней. Обычно его проводят при уменьшении напряжения на выводах аккумулятор до 4.05 В и прекращают при достижении 4.2 В

Несколько слов о температурном диапазоне при заряде. Большинство разновидностей Li-ion аккумуляторов допускают заряд током в 1С при температуре от 5 до 45 °C. При температуре от 0 до 5 °C рекомендуется заряжать током в 0.1 С. Заряд при минусовой температуре запрещен. Для заряда оптимальна температура от 15 до 25 °C.

Зарядные процессы в Li-polymer аккумуляторах почти идентичны вышеописанным, поэтому потребителю совершенно ни к чему знать, какой их двух типов аккумуляторов у него в руках. И все те зарядные устройства, которые он использовал для Li-ion аккумуляторов, годятся для Li-polymer.

А теперь об условиях разряда. Обычно Li-ion аккумуляторы разряжают до значения 3.0 В на элемент, хотя для некоторых разновидностей нижний порог составляет 2.5 В. Производители оборудования с питанием от аккумуляторов, как правило, разрабатывают устройства с порогом выключения 3.0 В (на все случаи жизни). Что это означает? Напряжение на аккумуляторе при включенном телефоне постепенно уменьшается, и как только оно достигнет 3.0 В, аппарат предупредит вас и выключится. Однако это совсем не означает, что он перестал потреблять энергию от аккумулятора. Энергия, пусть незначительная, требуется для определения нажатия клавиши включения телефона и некоторых других функций. Кроме того, энергию потребляет собственная внутренняя схема управления и защиты, да и саморазряд, хоть и небольшой, но все же характерен даже для аккумуляторов на основе лития. В результате, если оставить литиевые аккумуляторы на длительный срок без подзарядки, напряжение на них упадет ниже 2.5 В, что очень плохо. В этом случае возможно отключение внутренней схемы управления и защиты, и не все зарядные устройства смогут зарядить такие аккумуляторы. Кроме того, глубокий разряд отрицательно сказывается на внутренней структуре самого аккумулятора. Полностью разряженный аккумулятор должен заряжаться на первом этапе током всего в 0.1C. Словом, аккумуляторы скорее любят находиться в заряженном состоянии, чем в разряженном.

Несколько слов о температурных условиях при разряде (читай во время работы).

Как правило, Li-ion аккумуляторы лучше всего функционируют при комнатной температуре. Работа в более теплых условиях серьезно сокращает срок их службы. Хотя, например, свинцово-кислотный аккумулятор имеет самую высокую емкость при температуре более 30 °C, но длительная эксплуатация в таких условиях сокращает жизнь аккумулятора. Точно так же и Li-ion лучше работают при высокой температуре, которая поначалу противодействует увеличению внутреннего сопротивления аккумулятора, являющемуся результатом старения. Но повышенная энергоотдача коротка, поскольку повышение температуры, в свою очередь, способствует ускоренному старению, сопровождаемому дальнейшим увеличением внутреннего сопротивления.

Исключение составляют на данный момент только литий-полимерные аккумуляторы с сухим твердым полимерным электролитом. Для них жизненно необходима температура от 60 °C до 100 °C. И такие аккумуляторы заняли свою нишу на рынке резервных источников в местах с жарким климатом. Они помещаются в теплоизолированный корпус со встроенными элементами нагревания, питающимися от внешней сети. Li-ion полимерные аккумуляторы в качестве резервных, как считают, превосходят по емкости и долговечности VRLA аккумуляторы, особенно в полевых условиях, когда управление температурой невозможно. Но их высокая цена остается сдерживающим фактором.

При низких температурах эффективность аккумуляторов всех электрохимических систем резко падает. В то время как для NiMH, SLA и Li-ion аккумуляторов температура -20 °C является пределом, при котором они прекращают функционировать, NiCd продолжают работать до -40 °C. Отмечу только, что речь опять же идет только об аккумуляторах широкого применения.

Важно не забывать, что, хотя аккумулятор и может работать при низких температурах, это совсем не означает, что он может быть также заряжен в этих условиях. Восприимчивость к заряду у большинства аккумуляторов при очень низких температурах чрезвычайно ограничена, и ток заряда в этих случаях должен быть уменьшен до 0.1C.

В заключение хочу отметить, что задать вопросы и обсудить проблемы, связанные с Li-ion, Li-polymer, а также другими типами аккумуляторов, можно на форуме в подфоруме по аксессуарам.

При написании статьи использованы материалы [ — Аккумуляторы для мобильных устройств и портативных компьютеров. Анализаторы аккумуляторов.

Задаетесь вопросом: «Что выбрать: Li-Ion или Li-Po аккумулятор?» Мы подробно расскажем в чем отличие этих двух типов аккумуляторов.

Как всем нам известно, мощность портативного зарядного устройства в большей степени зависит от качества аккумуляторов внутри устройства. На современном рынке существует два вида аккумуляторов, которые используются для производства портативных зарядных устройств: Li-Ion и Li-Po элементы аккумулятора.

Li-Ion или Li-Po: В Чем Различие и Что Выбрать

К сведению пользователей, один из частозадаваемых вопросов касательно портативных зарядных устройств – это: какая разница между аккумуляторами Li-Ion и Li-Po, а также, какой из них лучше. Давайте будем разбираться.

Что же такое Li-Ion и Li-Po?

Li-Ion – это сокращение от литий-ионный, а Li-Po – от литий-полимерный. Окончание «ионный» и «полимерный» — это указание на катод. Литий-полимерный аккумулятор состоит из полимерного катода и твердого электролита, а литий-ионный аккумулятор – из углерода и жидкого электролита. Оба аккумулятора перезаряжаемые, и потом, в том или ином смысле, они оба выполняют одну и ту же функцию. В целом, литий-ионные аккумуляторы старше, чем литий-полимерные, но они по-прежнему широко распространены из-за низкой цены и неприхотливости в техническом обслуживании. Литий-полимерные аккумуляторы считаются более совершенными, с улучшенными характеристиками, обеспечивающими более высокий уровень безопасности, следовательно, такие аккумуляторы стоят дороже, чем литий-ионные.

Существует много конфигураций аккумуляторов Li-Ion. Самые распространенные литий-ионные аккумуляторы для портативных зарядных устройств – это аккумуляторы с типоразмером 18650, диаметром 18мм и длиной 65мм, в которых 0 означает цилиндрическую конфигурацию. Больше 60% портативных зарядок изготовлены из элементов аккумулятора с типоразмером 18650. Размер и вес таких элементов легко позволяет применять их во многих электронных устройствах. Технологии изготовления также не стоят на месте.

Поскольку среди покупателей все больше и больше возрастает спрос на более легкие и компактные портативные зарядки, все более очевидными становятся ограничения, которые влекут за собой литий-ионные аккумуляторы. Поэтому производители переходят на изготовление более легких, более плоских модульных литий-полимерных аккумуляторов для новых портативных зарядных устройств. Более того, литий-полимерные аккумуляторы не так подвержены риску взрыва, а поэтому в портативные зарядки больше не нужно встраивать защитный слой, в то время как большинство литий-ионных 18650 аккумуляторов должны быть установлены только вместе с защитой.

Давайте подытожим информацию про различия между литий-ионом и литий-полимером в виде таблицы.

Ключевые особенности Li-Ion Li-Po
Энергетическая плотность Высокая Низкая, с меньшим количеством циклов в сравнении с Li-Ion
Универсальность Низкая Высокая, производители не привязаны к стандартному формату ячеек
Вес Немного более тяжелые Легкие
Ёмкость Ниже Одинаковый объем Li-Po аккумулятора, превосходит по ёмксоти Li-Ion почти в два раза
Жизненный цикл Большой Большой
Взрывоопасность Более высокая Более продуманная безопасность снижает риск перезаряда, а также утечку электролита
Время заряда Немного более длинное более короткое
Изнашиваемость Теряет менее чем 0,1% своей эффективности каждый месяц Более медленней, чем Li-Ion аккумуляторы
Стоимость Более дешевый Более дорогой

После изучения всех преимуществ, недостатков и характеристик двух типов аккумуляторов, вы можете убедиться, что между ними нет сильной конкуренции. Хотя литий-ионный аккумулятор тоньше и изящнее, литий-ионные аккумуляторы отличаются большей удельной энергоемкостью, и потом, они гораздо дешевле в производстве.

Поэтому, не стоит обращать особого внимания на тип аккумулятора, просто выбирайте брендовое портативное зарядное устройство, которое соответствует вашим требованиям. В конце концов, в эти аккумуляторы добавляется множество химикатов, поэтому, еще неизвестно, какие из них прослужат дольше.

Поскольку любая батарея (аккумулятор) является источником постоянного электрического тока, то рано или поздно заряд её неизбежно истощится. С каждой подзарядкой ёмкость её будет всё меньше и меньше . Таковы законы физики.

Можно только ненадолго продлить её работу. Рассмотрим, как восстановить литий ионный аккумулятор чтобы выиграть время, необходимое для замены батареи.

ВАЖНО. Если вы новичок в технике, то дальше, вообще, ничего не стоит читать - просто идите за новой батареей или пригласите грамотного товарища. (Кума звать не надо!).


Кроме того, вы узнаете о причинах возгорания, взрывоопасности, старении ЛИА. Эта информация поможет определить - что именно произошло с батареей, а также даст возможность избежать ошибок в эксплуатации.

Итак, - литий-ионного типа аккумуляторы (ЛИА) применяются в широком спектре различной современной техники как источник эл. энергии от мобильных телефонов до накопителей в энергетических системах.

Их основные показатели работы могут различаться в таких пределах (это зависит от их хим состава):

  • Напряжение (номинал) - 3,7 В или 3,8 В;
  • Напряжение максимальное - 4,23 В или 4,4 В;
  • Напряжение минимальное - 2,5–2,75 В или 3,0 В;
  • Количество заряд-разрядов - 600 (при потере 20% ёмкости);
  • Сопротивление внутреннее 5–15 мОм/Ач;
  • При нормальных условиях значение саморазряда - 3% в месяц;
  • Рабочий диапазон температур - от минус 20°C до плюс 60°C, оптимальная - плюс 20°C.
  • Если при зарядке ЛИА произойдёт превышение напряжения, то может произойти его возгорание. Для защиты от этого в корпус вставляется контроллер. Его функция - отключить ЛИА. (Также контролируя ток, перегрев и глубину разряда).
  • Для снижения себестоимости не каждый литиевый аккумулятор снабжается контроллером (либо выполняет защиту не по всем параметрам).

ИНТЕРЕСНО: Первым изготовителем литиевых аккумуляторов стала в 1991 г. корпорация Sony.

Устройство и преимущества ЛИА

ЛИА состоит из катода (на фольге из алюминия) и анода (на фольге из меди), разделённых электролитическим сепаратором и помещённых в герметичную «банку».

Катод и анод присоединяются к токосъёмным клеммам.

Корпус иногда оснащён клапаном для сброса давления при аварийных моментах эксплуатации.

В литий-ионном аккумуляторе (ЛИА) заряд переносится ионом лития. Его характерной способностью является способность внедриться в кристаллическую решётку прочих материалов (в нашем случае это графит, окислы или соли металлов), образуя при этом химсвязи.

В настоящее время используются три разновидности материалов для катодов:

  • Лития кобальтаты (благодаря кобальту увеличивается количество зарядноразрядных циклов, а также появляется возможность эксплуатации при пониженных температурах);
  • Литий-марганец;
  • Лития феррофосфат (низкая себестоимость).
  • Преимущества ЛИА состоят в низком саморазряде, большом количестве циклов.

Недостатки ЛИА

Взрывоопасность аккумуляторов Li-ion в первом поколении была обоснована возникновением газообразных образований, которые приводили к замыканию между электродами. Теперь это устранено заменой анодного материала с металлического лития на графит.

Взрывоопасность также возникала в оксиднокобальтовых ЛИА при нарушениях эксплуатации.

ЛИА на литиевоферрофосфатной основе полностью лишены подобного недостатка.

ВАЖНО. Разрядка ЛИА при низких температурах (особенно повторная) приводит к снижению энергии на отдачу до десятков процентов. Кроме того, ЛИА «остро» реагируют на температуру при зарядке: оптимальная - +20 °C, а +5 °C - уже не рекомендована.

Эффект памяти

Исследования подтвердили существование эффекта памяти в ЛИА. Но суть состоит в его принципиальном наличии, а не в его влиянии на работу в целом.

Объяснение этого процесса звучит так: работа батареи заключается в периодическом высвобождении и захвате литиевых ионов и этот процесс при неполной зарядке ухудшается из-за нарушения микроструктуры электрода.

ВАЖНО. Специалистами выделены два правила продления службы ЛИА:

  • Недопущение полного разряда;
  • Не заряжать вблизи источников тепла.

Старение

ЛИА стареют даже вне эксплуатации. Двадцать процентов ёмкости теряются уже через два года. Не следует покупать их «в стол». Смотреть при покупке на дату производства.

Низкие температуры и мощность

До пятидесяти процентов мощности батарей теряется при температуре эксплуатации ниже 0 °C.

Самовозгорание

ЛИА склонны к самовозгоранию. При термическом разгоне неисправного (повреждённого) аккумулятора выделяются вещества ускоряющие его саморазогрев (кислород плюс горючие газы). Поэтому гореть он способен и при отсутствии воздуха.

Для тушения в таких случаях предусмотреть понижение температуры и предотвращать распространение огня.

Приступаем к восстановлению

После того как вам уже известна из вышеизложенного «физика» и «химия» работы ЛИА и его начинка, вы сможете самостоятельно выбрать один из способов для лечения своей батареи, а также оценить «разумность» нижеприведённых методов.

Избавляемся от газов

Нам уже известно, что при неправильной эксплуатации внутри «банки» могут образовываться газообразные вещества.

Суть этого способа состоит в том, что от них нужно избавиться. Для этого сначала снимают верхний блок (контроллер), потом прокалывают обнаруженный колпачок, а затем прижимают к твёрдой поверхности каким-то прессом для высвобождения газов.

После этого заклеивают отверстие эпоксидной смолой и возвращают на место контроллер.

Но перед тем как оживить аккумулятор телефона таким образом помните об ожидаемых опасностях этого способа:

  • Повреждение устройства чрезмерным воздействием;
  • Повреждение электроники под колпачком;
  • Возможность взрыва (самовозгорания) при замыкании катода с анодом.

Кратковременный «возврат» ёмкости

Ненадолго оживить батарею можно если провести «оживление» с помощью блока питания на 5–12 Вольт, резистора от 330 до 1000 Ом и мощностью не менее 500 мВт.

Для этого контакты блока питания соединяют с контактами ЛИА: минус к минусу, а плюс к плюсу через резистор, полярность которого проверяется мультиметром. Время потребления - не более двух-трёх минут.

Обратите внимание, что параметры подаваемого тока должны соответствовать требуемым, а вольтметром или тестером контролируйте напряжение.

Используем холодильник

Следуя этому нехитрому способу, восстановление аккумулятора проводится так:

извлечённый из смартфона аккумулятор нужно поместить в холодильник на время от двадцати до тридцати минут, предварительно поместив в полиэтиленовый пакетик. Затем подключить на одну минуту к зарядке , а потом подождать пока он не прогреется до температуры помещения.

Якобы после этих манипуляций его можно будет использовать как обычно.

Способ заряд-разряд

Этот метод нужно было бы назвать способом реанимации аккумулятора для школьника пятого класса.

По мнению популяризаторов этого «прикола» «привести в чувство» батарею телефона можно путём «несколькократного» (количество раз не указывается) стопроцентного заряда и последующего полного разряда батареи. Для разряда советуют воспользоваться какой-либо ресурсоёмкой игрой или утилитой AnTuTu, каждый раз для этого извлекая и вставляя обратно в мобильник.

Остаётся непонятным каким образом батарея будет заряжаться несколько раз до 100 процентов если она уже находится в нерабочем состоянии ?

«Дикий» метод восстановления

Заключается этот «манёвр» в том, что после снятия защитного контроллера нужно замкнуть между собой каким-либо металлическим предметом выводящиеся клеммы-токосниматели. После этого контроллер возвращается на место.

При этом добавляется ещё один многозначительный момент - в начале процедуры почему-то нужно отклеить наклеечку с техническими характеристиками ЛИА. Вот уж поистине «танцы с бубном»!

Раскачиваем ЛИА, отключённый контроллером

Для предотвращения глубокого разряда литий ионные аккумуляторы снабжены контроллером, который погружает его в «отключку» . В таком случае при замере напряжения на его клеммах перед контроллером - можно обнаружить значение около 2,5 вольт. Значит, батарея ещё жива!

Для этого сначала отключается (отпаивается) схема защиты.

«Банка» подключается к универсальному устройству для заряда-разряда (например, Turnigy Accucell 6). При этом прибор сам отслеживает процесс и восстановление проходит под его контролем.

Кнопкой «TYPE» выбирается программа заряда «Li-Po», ведь наш ЛИА на 3,7V.

С помощью коротких нажатий «СТАРТ» выбираются параметры заряда. Для Li-ion - значение 3,6 V, для Li-pol - 3,7 V.

Нужно выбрать для параметра значение «AUTO», так как в нашем случае заряд не начнётся из-за низкого заряда батареи.

Ток заряда нужно устанавливать на уровне десяти процентов от ёмкости аккумулятора (в нашем случае 150 mA). Значение устанавливается кнопками «+» и «-».

При достижении заряда в батарее 4.2 V устройство будет переведено в режим стабилизации напряжения, а по завершении процесса раздастся звуковой сигнал, а на дисплее будет сообщение «FULL».

И напоследок видео о том, как не нужно восстанавливать батареи

Замечания по технике безопасности

Перед тем как восстановить литий-ионный аккумулятор вы должны вспомнить о нижеприведённых правилах:

  • Нельзя оставлять проблемный ЛИА при проведении ремонта без присмотра. Спонтанное возгорание - это не угроза, а реальный факт.
  • Необходимо периодически контролировать температуру аккумулятора телефона выносной термопарой, можно электронным термометром или хотя бы рукой. Если поверхность показалась горячей, а не тёплой, нужно немедленно прекратить ремонт.
  • Не используйте высокие токи для зарядки. Возможный допустимый максимум - это 50 мА. Рассчитывается такой параметр путём деления напряжения питания БП на ёмкость резистора. Например, при 12 В и 500 Ом - это будет 24 мА.
  • Вместо резистора допустимо использование стандартного 80-мм вентилятора для компьютера.

Помните, что приведённые способы не дают стопроцентного результата, а ответственность в любом случае лежит на вас самих. Особенно это касается гуманитариев.

Не переоценивайте свои знания и возможности. Лучше лишний раз посоветуйтесь со знающими людьми.

А своим опытом делитесь с друзьями и пишите в комментариях.

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

Где покупать микросхемы?

Можно, конечно, купить в Чипе-Дипе, но там дорого. Поэтому я всегда беру в одном очень секретном магазине)) Самое главное, правильно выбрать продавца, тогда заказ придет быстро и наверняка.

Для вашего удобства, я собрал самых надежных продавцов в одну таблицу, пользуйтесь на здоровье:

наименование даташит цена
LM317 5.5 руб/шт. Купить
LM350
LTC1734 42 руб/шт. Купить
TL431 85 коп/шт. Купить
MCP73812 65 руб/шт. Купить
NCP1835 83 руб/шт. Купить
*Все микросхемы с бесплатной доставкой

Эксплуатация, зарядка, плюсы и минусы литиевых аккумуляторов

Очень многие сегодня используют электронные устройства в своей повседневной жизни. Сотовые телефоны, планшеты, ноутбуки… Все знают, что это такое. Но немногие знают, что ключевым элементом этих устройств является литиевый аккумулятор. Этим типом аккумуляторных батарей комплектуется практически каждое мобильное устройство. Сегодня мы поговорим о литиевых аккумуляторах. Эти АКБ и технология их производства постоянно развиваются. Существенное обновление технологии происходит раз в 1─2 года. Мы рассмотрим общий принцип работы литиевых батарей, а разновидностям будут посвящены отдельные материалы. Ниже будет рассмотрена история возникновения, эксплуатация, хранение, преимущества и недостатки литиевых аккумуляторов.

Исследования в этом направлении проводились ещё в начале 20 века. «Первые ласточки» в семействе литиевых аккумуляторов появились в начале семидесятых годов прошлого столетия. Анод этих батарей был выполнен из лития. Они быстро стали востребованы благодаря тому, что обладали высокой удельной энергией. Благодаря наличию лития, очень активного восстановителя, разработчикам удалось сильно нарастить номинальное напряжение и удельную энергию элемента. Разработка, последующие испытания и доводки технологии «до ума» заняли около двух десятков лет.


За это время решались в основном вопросы с безопасность использования литиевых аккумуляторов, подбором материалов и т. п. Вторичные литиевые элементы с апротонными электролитами и разновидность с твёрдым катодом похожи по электрохимическим процессам, протекающих в них. В частности, на минусовом электроде идёт анодное растворение лития. В кристаллическую решётку плюсового электрода идёт внедрение лития. Когда аккумуляторный элемент заряжается, то процессы на электродах идут в обратном направлении.

Материалы для плюсового электрода разработали достаточно быстро. Основное требование к ним было в том, чтобы на них проходило обратимые процессы.

Речь идёт об анодной экстракции и катодном внедрении. Эти процессы ещё называют анодным деинтеркалированием и катодным интеркалированием. Исследователи испытывали различные материалы в качестве катода.

Требование было в том, чтобы отсутствовали изменения при циклировании. В частности, изучались такие материалы, как:

  • TiS2 (дисульфид титана);
  • Nb(Se)n (селенид ниобия);
  • сульфиды и диселениды ванадия;
  • сульфиды меди и железа.

Все перечисленные материалы имеют слоистую структуру. Проводились исследования и с материалами более сложных составов. Для этого использовались добавки некоторых металлов в небольших количествах. Это были элементы имеющее катионы большего радиуса, чем у Li.

Высокие удельные характеристики катода были получены на оксидах металлов. Пробовались разные оксиды на предмет обратимой работы, которая зависит от степени искажения кристаллической решётки материала оксида, когда туда внедряются катионы лития. В расчёт принималась и электронная проводимость катода. Задача заключалась в том, чтобы обеспечить изменения объёма катода не более 20 процентов. Согласно исследованиям, наилучшие результаты показали оксиды ванадия и молибдена.



С анодом возникли главные сложности при создании литиевых аккумуляторов. Точнее в процессе зарядки, когда происходит катодное осаждение Li. При этом образуется поверхность с очень высокой активностью. Литий осаждается на поверхности катода в виде дендритов и в результате образуется пассивная плёнка.

Получается так, что эта плёнка обволакивает частицы лития и препятствует их контакту с основой. Этот процесс называется инкапсулированием и приводит к тому, что после зарядки аккумулятора определённая часть лития исключается из электрохимических процессов.

В итоге после определённого количества циклов, электроды изнашивались и нарушалась температурная стабильность процессов внутри литиевого аккумулятора.

В какой-то момент элемента разогревался до точки плавления Li и реакция переходила в неконтролируемую фазу. Так, в начале 90-х годов на предприятия компаний, занимавшихся их выпуском, возвратили много литиевых АКБ. Это были одни из первых аккумуляторов, которые стали применяться в мобильных телефонах. В момент разговора (ток достигает максимального значения) по телефону из этих батарей происходил выброс пламени. Было немало случаев, когда пользователю обжигало лицо. Образование дендритов при осаждении лития, помимо опасности пожара и взрыва, может приводить к короткому замыканию.

Поэтому исследователи потратили много времени и сил на разработку методом обработки поверхности катода. Разрабатывались способы введения в электролит добавок, препятствующих образованию дендритов. В этом направлении учёные достигли успехов, но полностью проблема не решена до сих пор. Эти проблемы с использованием металлического лития пытались решить и другим методом.

Так, отрицательный электрод стали изготавливать из литиевых сплавов, а не из чистого Li. Самым успешным оказался сплав лития и алюминия. Когда идёт процесс разряда, то в электроде из такого сплава вытравливается литий, а при заряде, наоборот. То есть, в процессе цикла заряд-разряд изменяется концентрация Li в сплаве. Конечно, произошла некоторая потеря активности лития в сплаве по сравнению с металлическим Li.

Потенциал электрода из сплава снизился где-то на 0,2─0,4 вольта. Рабочее напряжение литиевой батареи снизилось и одновременно уменьшилось взаимодействие электролита и сплава. Это стало положительным фактором, поскольку уменьшился саморазряд. Но сплав лития и алюминия не получил широкого распространения. Проблема здесь заключалась в том, что при циклировании сильно изменялся удельный объем этого сплава. Когда происходил глубокий разряд, то электрод охрупчивался и осыпался. Из-за снижения удельных характеристик сплава исследования в этом направлении были прекращены. Изучались и другие сплавы.


Как показали исследования, лучше всего подходят сплав Li с тяжёлыми металлами. Примером может служить сплав Вуда. Они хорошо показали себя в плане сохранения удельного объёма, но удельные характеристики оказались недостаточными для использования в литиевых аккумуляторах.

В результате из-за того, что металлический литий нестабилен, исследования стали вести в другом направлении. Было решено исключить из компонентов батареи литий в чистом виде, а использовать его ионы. Так появились литий─ионные (Li-Ion) аккумуляторы.

Энергетическая плотность литий─ионных АКБ меньше, чем у литиевых. Но безопасность и удобство эксплуатации у них значительно выше. Можете прочитать подробнее про по указанной ссылке.

Эксплуатация и срок службы

Эксплуатация

Правила эксплуатации будут рассмотрены на примере распространённых литиевых аккумуляторов, которые применяются в мобильных устройствах (телефонах, планшетах, ноутбуках). В большинстве случаев от «дурака» такие аккумуляторы защищает встроенный контроллер. Но пользователю полезно знать базовые вещи об устройстве, параметрах и эксплуатации литиевых АКБ.

Для начала следует запомнить, что литиевый аккумулятор должен иметь напряжением от 2,7 до 4,2 вольта. Нижнее значение здесь говорит о минимальном уровне заряда, верхнее – о максимальном. В современных Li батареях электроды выполняются из графита и в их случае нижняя граница напряжения составляет 3 вольта (2,7 – это значение для электродов из кокса). Электрическая энергия, которую отдаёт аккумулятор при падении напряжения от верхней границы к нижней, называется его ёмкостью.

Чтобы продлить срок службы литиевых аккумуляторов производители несколько сужают диапазон напряжения. Часто это 3,3─4,1 вольта. Как показывает практика, максимальный срок службы литиевых батарей достигается при уровне заряда 45 процентов. Если аккумулятор передерживать на зарядке или сильно разряжать, то срок эксплуатации сокращается. Обычно рекомендуется ставить литиевый аккумулятор заряжаться при 15─20% заряда. А прекращать зарядку надо сразу после достижения 100% ёмкости.

Но, как уже говорилось, от перезарядки и глубокого разряда аккумулятор спасает его контроллер. Эта управляющая плата с микросхемой имеется практически на всех литиевых аккумуляторных батареях. В различной потребительской электронике (планшет, смартфон, ноутбук) работу контроллера, интегрированного в АКБ, ещё дополняет микросхема, которая распаяна на плате самого устройства.

В общем, правильная эксплуатация литиевых аккумуляторов обеспечивается их контроллером. От пользователя в основном требуется не встревать в этот процесс и не заниматься самодеятельностью.

Срок службы

Срок службы литиевых аккумуляторных батарей составляет около 500 циклов заряд-разряд. Это значение справедливо для большинства современных литий─ионных и литий─полимерных аккумуляторов. По времени срок службы может быть разный. Это зависит от интенсивности использования мобильного устройства. При постоянном использовании, нагрузкой ресурсоёмкими приложениями (видео, игры) аккумулятор может исчерпать свой лимит за год. Но в среднем срок службы литиевых аккумуляторов составляет 3─4 года.

Процесс зарядки

Сразу стоит отметить, что для нормальной эксплуатации батареи, нужно использовать штатное зарядное устройство, которое поставляется в комплекте с гаджетом. В большинстве случаев это источник постоянного тока с напряжением 5 вольт. Штатные зарядки для телефона или планшета обычно отдают ток около 0,5─1 * С (С – номинальная ёмкость батареи).
Стандартным режимом зарядки литиевого аккумулятора считается следующий. Этот режим используется в контроллерах компании Sony и обеспечивает максимальную полноту зарядки. На рисунке ниже этот процесс представлен в графическом виде.



Процесс состоит из трёх этапов:

  • продолжительность первого этапа около одного часа. При этом ток зарядки держится на постоянном уровне до тех пор, пока напряжение АКБ не достигнет значения 4,2 вольта. По окончании степень заряженности равна 70%;
  • второй этап также идёт около часа. В это время контроллер поддерживает постоянное напряжение 4,2 вольта, а ток зарядки при этом снижается. Когда сила тока падает примерно до 0,2*C, запускается заключительный этап. По окончании степень заряженности равна 90%;
  • на третьем этапе ток постоянно снижается при напряжении 4,2 вольта. В принципе, эта стадия повторяет второй этап, но имеет строгое ограничение по времени в 1 час. После этого контроллер отключает батарею от зарядного устройства. По окончании степень заряженности равна 100%.

Контроллеры, которые способны обеспечить такую стадийность, стоят довольно дорого. Это отражается на стоимости аккумулятора. В целях удешевления многие производители устанавливают в аккумуляторы контроллеры с упрощённой системой заряда. Часто это бывает только первый этап. Зарядка прерывается при достижении напряжения 4,2 вольта. Но в этом случае литиевая батарея заряжается лишь на 70% от ёмкости. Если литиевый аккумулятор вашего устройства заряжается 3 часа и меньше, то, скорее всего, он имеет упрощённый контроллер.

Стоит отметить ещё ряд моментов. Периодически (раз в 2─3 месяца) делайте полный разряд АКБ (чтобы телефон отключился). Затем проводится полная зарядка до 100%. После этого вынимаете батарею на 1─2 минуты, вставляете и включаете телефон. Уровень заряда будет меньше 100%. Заряжаете полностью и так делаете несколько раз, пока при вставке батареи не будет показан полный заряд.


Помните, что через разъём USB ноутбука, десктопа, переходника от прикуривателя в машине зарядка идёт значительно медленнее, чем от штатного ЗУ. Это объясняется ограничением интерфейса USB по току в 500 мА.

Также помните о том, что на холоде и при низком атмосферном давлении литиевые аккумуляторы теряют часть своей ёмкости. При отрицательных температурах этот тип батарей становится неработоспособным.