Понятие файла. Файловый принцип хранения данных

Лекция №6

Системы управления файлами.

Файловая система HPFS

Вопросы:

1. Файловая система HPFS

· Основные особенности HPFS

· Структура раздела HPFS

· Принцип размещения файлов

· Принципы хранения информации о расположении файлов

· Структура и размещение каталогов

· Надежность хранения данных в HPFS

2. Система управления файлами HPFS.IFS

3. Система управления файлами HPFS386.1FS

4. Файловая система JFS

HPFS (High Performance File System ) - вы­сокопроизводительная файловая система.

HPFS впервые появилась в OS/2 1.2 и LAN Manager. (Кстати, HPFS была первой файловой системой, поддерживающей длинные имена.)

Перечислим основные особенности HPFS.

· Главное отличие - базовые принципы размещения файлов на диске и принципы хранения информации о местоположении файлов. Благодаря этим принципам HPFS имеет высокую производительность и отказоустойчивость, является надежной файловой системой.

· Дисковое пространство в HPFS выделяется не кластерами (как в FAT ) , а блоками. В современной реализации размер блока взят равным одному сектору, но в принципе он мог бы быть и иного размера. (По сути дела, блок - это и есть кластер, только кластер всегда равен одному сектору). Размещениефайлов в таких небольших блоках позволяет более эффектив­но использовать пространство диска , так как непроизводительные потери сво­бодного места составляют в среднем всего (полсектора) 256 байт на каждый файл. Вспомним, что чем больше размер кластера, тем больше места на диске расходуется напрас­но.

· Система HPFS стремится расположить файл в смежных блоках, или, если такой возможности нет, разместить его на диске таким образом, чтобы экстенты (фрагменты) файла физически были как можно ближе друг к другу. Такой подход существенно уменьшает время позиционирова­ния головок записи/чтения жесткого диска и время ожидания (задержка между установкой головки чтения/записи на нужную дорожку). Напомним, что в FAT файлу просто выделяется первый свободный кластер.

Экстенты (extent) - фрагменты файла, располагающиеся в смежных секторах диска. Файл имеет по крайней мере один экстент, если он не фрагментирован, а в противномслучае - несколько экстентов.

· Используется метод сбалансированных двоичных деревьев для хранения и поиска ин­формации о местонахождении файлов (каталоги хранятся в центре диска, кроме того, предусмотрена автоматиче­ская сортировка каталогов), что существенно повышает производительность HPFS (в сравнении с FAT ).

· В HPFS предусмотрены специальные расширенные атрибуты файлов, позволяющие управлять доступом к файлам и каталогам .

Расширенные атрибуты (extended attributes, EAs) позволяют хранить дополнительную информацию о файле. Например, каждому файлу может быть сопоставлено его уникаль­ное графическое изображение (значок), описание файла, коммента­рий, сведения о владельце файла и т. д.

C труктура раздела HPFS


В начале раздела с установленной HPFS расположено три управляющих блока:

· загрузочный блок (boot block),

· дополнительный блок (super block) и

· запас­ной (резервный) блок (spare block).

Они занимают 18 секторов.

Все остальное дис­ковое пространство в HPFS разбито на части из смежных секторов - полосы (band - полоса, лента ). Каждая полоса занимает на диске 8 Мбайт.

Каждая полоса и имеет свою собственную битовую карту распределе­ния секторов .Битовая карта показывает, какие секторы данной полосы за­няты, а какие - свободны. Каждому сектору полосы данных соответствует один бит в ее битовой карте. Если бит = 1, то сектор занят, если 0 - свободен.

Битовые карты двух полос располагаются на диске рядом, так же располагаются и сами полосы. То есть последовательность полос и карт выглядит как на рис.

Сравним с FAT . Там на весь диск только одна “битовая карта” (таблица FAT) . И для работы с ней приходится перемещать головки чте­ния/записи в среднем через половину диска.

Именно для того, чтобы сократить время позиционирования головок чтения/записи жесткого диска в HPFS диск разбит на полосы.

Рассмотрим управляющие блоки .

Загрузочный блок (boot block )

Содержит имя тома, его серийный номер, блок парамет­ров BIOS и программу начальной загрузки.

Программа начальной загрузки на­ходит файл OS2LDR, считывает его в память и передает управление этой про­грамме загрузки ОС, которая, в свою очередь, загружает с диска в память ядро OS/2 - OS2KRNL. И уже OS2KRIML с помощью сведений из файла CONFIG.SYS за­гружает в память все остальные необходимые программные модули и блоки дан­ных.

Загрузочный блок располагается в секторах с 0 по 15.

Супер Блок (super block )

Содержит

· указатель на список битовых карт (bitmap block list). В этом списке перечислены все блоки на диске, в которых расположены би­товые карты, используемые для обнаружения свободных секторов;

· указатель на список дефектных блоков (bad block list). Когда система обнаруживает поврежденный блок, он вносится в этот список и для хранения информации больше не используется;

· указатель на группу каталогов (directory band),

· указатель на файловый узел (F-node) корневого каталога,

· дату последней проверки раздела програм­мой CHKDSK;

· информацию о размере полосы (в текущей реализации HPFS - 8 Мбайт).

Super block размещается в 16 секторе.

Резервный блок (spare block)

Содержит

· указатель на карту аварийного замеще­ния (hotfix map или hotfix-areas);

· указатель на список свободных запасных бло­ков (directory emergency free block list);

· ряд системных флагов и дескрипторов.

Этот блок разме­щается в 17 секторе диска.

Резервный блок обеспечивает высокую отказоустойчивость файловой системы HPFS и позволяет восстанавливать поврежденные данные на диске.

Принцип размещения файлов

Экстенты (extent) - фрагменты файла, располагающиеся в смежных секторах диска. Файл имеет по крайней мере один экстент, если он не фрагментирован, а в противномслучае - несколько экстентов.

Для сокращения времени позиционирования головок чтения/записи жесткого диска система HPFS стремится

1) расположить файл в смежных блоках;

2) если такой возможности нет, то разместить экстенты фрагментированного файла как можно ближе друг к другу,

Для этого HPFS использует статистику, а также старается условно резервировать хотя бы 4 килобайта места в конце файлов, которые растут.

Когда данные дописыва­ются в существующий файл, HPFS сразу же резервирует как минимум 4 Кбайт непрерывного пространства на диске. Если же часть этого пространства не по­требовалась, то после закрытия файла она высвобождается для дальнейшего использования. Если же файл не может быть увеличен без нару­шения его непрерывности, HPFS опять-таки резервирует 4 Кбайт смежных блоков как можно ближе к основной части файла.

Очевидно, что степень фрагментации файлов на диске зависит как от числа фай­лов, расположенных на нем, их размеров и размеров самого диска, так и от ха­рактера и интенсивности самих дисковых операций. Незначительная фрагмента­ция файлов практически не сказывается на быстродействии операций с файлами. Файлы, состоящие из двух-трех экстентов, практически не снижают производи­тельность HPFS, так как эта файловая система следит за тем, чтобы области дан­ных, принадлежащие одному и тому же файлу, располагались как можно ближе друг к другу.

Программы (утилиты) дефрагментации , имеющиеся для этой файловой системы, по умолчанию считают наличие двух-трех экстен­тов у файла нормой.

Например, программа HPFSOPT из набора утилит GammaTech по умолчанию не дефрагментирует файлы, состоящие из трех и менее экс­тентов, а файлы, которые имеют большее количестве экстентов, приводятся к 2 или 3 экстентам, если это возможно.

Практика показывает, что в среднем на диске имеется не более 2% файлов, имеющих три и бо­лее экстентов. Даже общее количество фрагментированных файлов, как пра­вило, не превышает 3%. Такая ничтожная фрагментация оказывает пре­небрежимо малое влияние на общую производительность системы.

Еще один способ уменьшения фрагментирования файлов - это расположение файлов, растущих навстречу друг другу, или файлов, открытых разными тредами или процессами, в разных полосах диска.

Принципы хранения информации о расположении файлов

Каждый файл и каталог диска имеет свой файловый узел F-Node . Это структура, в которой содержится информация о располо­жении файла и о его расширенных атрибутах.

Замечание. Файловая система FAT аналога файлового узла не имеет.

Каждый F-Node занимает один сектор и всегда располагается поблизости от своего файла или каталога (обычно - непосредственно перед файлом или ка­талогом). Объект F-Node содержит

· длину,

· первые 15 символов имени файла,

· специальную служебную информацию,

· статистику по доступу к файлу,

· расши­ренные атрибуты файла,

· список прав доступа (или только часть этого списка, если он очень большой); если расширен­ные атрибуты слишком велики для файлового узла, то в него записывается ука­затель на них.

· ассоциативную информацию о расположении и подчине­нии файла и т. д.

Если файл непрерывен, то его размещение на диске описывается двумя 32-битными числами. Первое число представляет собой указатель на первый блок файла, а второе - длину экстента (число следующих друг за другом бло­ков, принадлежащих файлу).

Замечание. Из этого следует, что максимальный объем диска может составлять (2 32 -1)*512 = 2 Тбайта.

Если файл фрагментирован, то размещение его экстентов описывается в файловом узле дополнительными парами 32-битных чисел.

В файловом узле можно разместить информацию максимум о восьми экстентах файла. Если файл имеет больше экстентов, то в его файловый узел записывается указатель на блок размещения (allocation block), который может содержать до 40 указателей на экстенты или, по аналогии с блоком дерева каталогов, на другие блоки размещения.

Таким образом, двухуровневая структура блоков размеще­ния может хранить информацию о 480 секторах, что позволяет работать с файлами размером до 7,68 Гбайт. На практике размер файла не может превышать 2 Гбайт, но это обусловлено текущей реализацией интерфейса прикладного программи­рования.

Структура и размещение каталогов

Для хранения каталогов используется полоса, находящаяся в центре диска .

Эта полоса называется directory band .

Если она полностью заполнена, HPFS начинает располагать каталоги файлов в других полосах.

Расположение этой информаци­онной структуры в середине диска значительно сокращает среднее время пози­ционирования головок чтения/записи. Действительно, для перемещения голо­вок чтения/записи из произвольного места диска в его центр требуется в два раза меньше времени, чем для перемещения к краю диска, где находится корне­вой каталог в случае файловой системы FAT. Уже только одно это обеспечивает более высокую производительность файловой системы HPFS по сравнению с FAT. Аналогичное замечание справедливо и для NTFS, которая тоже располага­ет свой master file table в начале дискового пространства, а не в его середине.

Однако существенно больший (по сравнению с размещением Directory Band в середине логического диска) вклад в производительность HPFS дает использо­вание метода сбалансированных двоичных деревьев для хранения и поиска ин­формации о местонахождении файлов.

Вспомним, что в файловой системе FAT каталог имеет линейную структуру, специальным образом не упорядоченную, поэтому при поиске файла требуется последовательно просматривать его с само­го начала.

В HPFS структура каталога представляет собой сбалансированное де­рево с записями, расположенными в алфавитном порядке.

Каждая за­пись, входящая в состав дерева, содержит

· атрибуты файла,

· указатель на соответствующий файловый узел,

· информацию о времени и дате создания фай­ла, времени и дате последнего обновления и обращения,

· длине данных, содержа­щих расширенные атрибуты,

· счетчик обращений к файлу,

· длине имени файла

· само имя,

· и другую информацию.

Файловая система HPFS при поиске файла в каталоге просматривает только не­обходимые ветви двоичного дерева (В-Тгее). Такой метод во много раз эффек­тивнее, чем последовательное чтение всех записей в каталоге, что имеет место в системе FAT.

Размер каждого из блоков, в терминах которых выделяются каталоги в текущей реализации HPFS, равен 2 Кбайт. Размер записи, описывающей файл, зависит от размера имени файла. Если имя занимает 13 байтов (для формата 8.3), то блок из 2 Кбайт вмещает до 40 описателей файлов. Блоки связаны друг с другом по­средством списка.

Проблемы

При переименовании файлов может возникнуть так называемая перебаланси­ровка дерева. Создание файла, переименование или стирание может приводить к каскадированию блоков каталогов . Фактически, переименование может потер­петь неудачу из-за недостатка дискового пространства, даже если файл непо­средственно в размерах не увеличился. Во избежание этого “бедствия” HPFS поддерживает небольшой пул свободных блоков, которые могут использовать­ся при “аварии”. Эта операция может потребовать выделения дополнительных блоков на заполненном диске. Указатель на этот пул свободных блоков сохраня­ется в SpareBlock,

РЕЗЮМЕ

Принципы размещения файлов и каталогов на диске в HPFS :

· информация о местоположении файлов рассредоточена по всему дис­ку, при этом записи каждого конкретного файла размещаются (по возможно­сти) в смежных секторах и поблизости от данных об их местоположении;

· каталоги размещаются в середине дискового пространства;

· каталоги хранятся в виде бинарного сбалансированного дерева с записями, расположенными в алфавитном порядке.

Надежность хранения данных в HPFS

Любая файловая система должна обладать средствами исправления ошибок, возникаю­щих при записи информации на диск. Система HPFS для этого использует меха­низм аварийного замещения (hotfix).

Если файловая система HPFS сталкивается с проблемой в процессе записи дан­ных на диск, она выводит на экран соответствующее сообщение об ошибке. Затем HPFS сохраняет информацию, которая должна была быть записана в дефектный сектор, в одном из запасных секторов, заранее зарезервированных на этот слу­чай. Список свободных запасных блоков хранится в резервном блоке HPFS. При обнаружении ошибки во время записи данных в нормальный блок HPFS выби­рает один из свободных запасных блоков и сохраняет эти данные в нем. Затем файловая система обновляет карту аварийного замещения в резервном блоке.

Эта карта представляет собой просто пары двойных слов, каждое из которых является 32-битным номером сектора.

Первый номер указывает на дефектный сек­тор, а второй - на тот сектор среди имеющихся запасных секторов, который был выбран для его замены.

После замены дефектного сектора запасным карта ава­рийного замещения записывается на диск, и на экране появляется всплывающее окно, информирующее пользователя о произошедшей ошибке записи на диск. Каждый раз, когда система выполняет запись или чтение сектора диска, она просматривает карту аварийного замещения и подменяет все номера дефектных секторов номерами запасных секторов с соответствующими данными.

Следует заметить, что это преобразование номеров существенно не влияет на производительность системы, так как оно выполняется только при физическом обращении к диску, но не при чтении данных из дискового кэша.

Очистка карты аварийного замещения автоматически выполняется программой CHKDSK при проверке дис­ка HPFS. Для каждого замещенного блока (сектора) программа CHKDSK выде­ляет новый сектор в наиболее подходящем для файла (которому принадлежат данные) месте жесткого диска. Затем программа перемещает данные из запасно­го блока в этот сектор и обновляет информацию о положении файла, что может потребовать новой балансировки дерева блоков размещения. После этого CHKDSK вносит поврежденный сектор в список дефектных блоков, который хранится в дополнительном блоке HPFS, и возвращает освобожденный сектор в список свободных запасных секторов резервного блока. Затем удаляет запись из карты аварийного замещения и записывает отредактированную карту на диск.

Все основные файловые объекты в HPFS, в том числе файловые узлы, блоки размещения и блоки каталогов, имеют уникальные 32-битные идентификаторы и указатели на свои родительские и дочерние блоки. Файловые узлы, кроме того, содержат сокращенное имя своего файла или каталога. Избыточность и взаимосвязь файловых структур HPFS позволяют программе CHKDSK полно­стью восстанавливать файловую структуру диска, последовательно анализируя все файловые узлы, блоки размещения и блоки каталогов. Руководствуясь соб­ранной информацией, CHKDSK реконструирует файлы и каталоги, а затем заново создает битовые карты свободных секторов диска. Запуск программы CHKDSK следует осуществлять с соответствующими ключами. Так, например, один из вариантов работы этой программы позволяет найти и восстановить удаленные файлы.

Система управления файлами HPFS.IFS

HPFS относится к так называемым монтируемым файловым системам -IFS (installable file system - устанавливаемая, монтируемая система управления файлами ) . Это оз­начает, что она не встроена в операционную систему, а добавляется к ней при не­обходимости.

Устанавливаемые файловые системы представляют собой специальные “драйверы” для доступа к разделам, отформатированным под другую файловую систему. Это очень удобный и мощный механизм добавления в ОС новых файловых систем и замены одной системы управления файлами на другую.

Сегодня, например, для OS/2 уже реально существуют IFS-модули для файловой системы VFAT , FAT32, Ext2FS (файловая система Linux), NTFS (правда, пока только для чтения). Для работы с данными на CD-ROM имеется CDFS.IFS. Есть и FTP.IFS, позволяющая монтировать ftp-архивы как локальные диски.

Файловая система HPFS устанавливается оператором IFS в файле CONFIG.SYS.

Этот оператор всегда помещается в первой строке данного конфи­гурационного файла. Пример.

IFS-E:\OS2\HPFS.IFS /САСНЕ:2048 /CRECL:4/AUTOCHECK : CD

Здесь оператор IFS устанавливает файловую систему HPFS с кэшем в 2 Мбайт, длиной записи кэша в 8 Кбайт и ав­томатической процедурой проверки дисков С и D:

Замечание . Подробности установки параметров и возможные значения клю­чей имеются в HELP-файлах, устанавливаемых вместе с операционной систе­мой OS/2 Warp (или см. в книге Гордеева, Молчанова “Системное программное обеспечение” на стр. 175.

C истема управления файлами HPFS386.1FS

Это реализации HPFS для работы на серверах, функционирующих под управ­лением OS/2.

Ее принципиальное отличие от системы HPFS.IFS

· HPFS386.1FS позволяет (посредством более полного использования техноло­гии расширенных атрибутов) организовать ограничения на доступ к файлам и каталогам с помощью соответствующих списков доступа - ACL (access control list). (Эта же технология используется в файловой системе NTFS ) .

· в системе HPFS386.1FS нет ограничений на объем памяти, выделяемой для кэширования файловых записей. Иными словами, при наличии достаточного объема оперативной памяти объем файлового кэша может быть в несколько десятков мегабайт, в то время как для обычной HPFS.IFS этот объем не может превышать 2 Мбайт, что по сегодняшним меркам безусловно мало.

· При установке режимов работы файлового кэша HPFS386.1PS есть возможность явным образом указать алгоритм кэширования.

Наиболее эффек­тивным алгоритмом можно считать так называемый “элеваторный”, когда при записи данных из кэша на диск они предварительно упорядочиваются таким об­разом, чтобы минимизировать время, отводимое на позиционирование головок чтения/ записи. Головки чтения/записи при этом перемещаются от внешних ци­линдров к внутренним и по ходу своего движения осуществляют запись и чтение данных в соответствии со специальным образом упорядочиваемым списком за­просов на дисковые операции.

Пример записи строк в конфигурационном файле CONFIG.SYS, кото­рые устанавливают систему HPFS386.1FS и определяют параметры работы ее под­системы кэширования можно посмотреть в книге Гордеева, Молчанова “Системное программное обеспечение” на стр. 176-178

Файловая система JFS

Для серверной операционной системы OS/2 Warp 4.5 была создана новая журнализирующая файловая система JFS (Journaling file system) .

Новая серверная ОС компании IBM под названием OS/2 WarpServer for e-Business вышла в 1999 г.

JFS имеет большую безопасность в структурах данных благодаря технике, разработанной для СУБД.

Работа с файловой системой происходит в режиме транзакций с ведением журнала транзакций. В случае системных сбоев есть возможность обработать журнал транзакций с целью внести или сбросить какие-либо изменения, произведенные во время системного сбоя.

В этой системе увеличена скорость восстановления файловой системы после сбоя.

Но, сохраняя целостность файловой системы, система управления файлами не гарантирует восстановление данных пользователя.

Файловая система JFS обеспечивает самую высокую скорость работы с файлами из всех известных систем, созданных для ПК (это очень важно для серверной ОС).


Информация, представляемая для обработки на компьютере, называется данными. Для хранения на устройствах внешней памяти данные организуют в виде файлов. Файл - именованная область внешней памяти.

Способ организации как служебной, так и пользовательской информации о файлах на носителях называют файловой системой. Конкретная файловая система определяет, в частности, правила именования файлов.

Необходимые для выполнения операций с файлами и носителями программные средства входят в состав операционных систем. Такие программные средства не изменяют и не обращаются к содержимому файлов, а оперируют с ними просто как с целым, непрерывным массивом данных. Таким образом, файловая система обеспечивает выполнение операций для любых программ.

Имя файлу присваивает пользователь, или программа, создающая файл, предлагает имя в автоматическом режиме. По историческим причинам для пользователя имя файла в операционных системах фирмы Майкрософт состоит из двух частей, разделенных точкой: собственно имени и расширения. Тип файла определяется по его расширению, которое задает программа, сохраняющая файл.

С точки зрения прикладных программ, файл представляет собой некоторую последовательность байтов. Используя такой подход, как доступ к файлам, организуется также доступ к некоторым устройствам, которые принимают или возвращают поток байтов. К таким устройствам относятся принтеры, модемы, клавиатура или поток текстового вывода на экран и др.

В некоторых операционных системах предусмотрен такой доступ и к служебной информации самих носителей. Для работы с такими файлами предусмотрены специальные, зарезервированные системой, имена файлов.

Следует помнить, что для ОС линии Microsoft:

между именем и расширением ставится точка, не входящая ни в имя, ни в расширение;

имя файла можно набирать в любом регистре, т.к. для системы все буквы строчные;

символы, не использующиеся в имени файла * = + \ ; : , . < > / ?

имена устройств не могут использоваться в качестве имён файлов (prn, lpt, com, con, nul).

Наиболее часто встречающиеся расширения:

EXE, COM - готовая к выполнению программа;

ВАТ - пакетный командный файл;

SYS - программа-драйвер устройства (системная);

ВАК - резервная копия файла;

OBJ - объектный модуль («полуфабрикат» программы);

DAT - файл данных со служебной информацией;

BAS - исходный текст программы на Бейсике;

ТХТ - текстовый файл;

DOC - документ, созданный в Microsoft Word.

Для удобства хранения и работы файловые структуры организуются с помощью вложенных каталогов (папок).

Каталог - специальный системный файл, в котором хранится служебная информация о файлах.

На каждом носителе может быть множество каталогов. В каждом каталоге может быть зарегистрировано много файлов, но каждый файл регистрируется только в одном каталоге

На каждом логическом томе присутствует один главный, или корневой, каталог. В нем регистрируются файлы и подкаталоги (каталоги 1 уровня). В каталогах 1 уровня регистрируются файлы и каталоги 2 уровня и т. д. Получается древовидная структура каталогов, например:

Каталог, с которым работает пользователь в настоящий момент, называется текущим.

Когда используется файл не из текущего каталога, программе, осуществляющей доступ к файлу, необходимо указать, где именно этот файл находится. Это делается с помощью указания пути к файлу.

Путь к файлу - это последовательность имен каталогов, в операционных системах Windows разделенных символом «\» (в ОС линии UNIX используется символ «/»). Этот путь задает маршрут к тому каталогу, в котором находится нужный файл.

Рассмотрим, например, запись \KLASS10\DOCS\START2\text.doc

Она означает, что файл text.doc находится в подкаталоге START2, который находится в каталоге DOCS, а он в свою очередь находится в каталоге KLASS10 корневого каталога.

Над файлами можно производить следующие основные операции: копирование, перемещение, удаление, переименование и пр.

Каждый файл на диске имеет свой адрес. Чтобы понять принцип доступа к информации, хранящейся в файле, необходимо знать способ записи данных на носители информации.

Перед использованием диск размечается на дорожки и секторы (форматируется). С точки зрения оборудования разметка - это процесс записи на носитель служебной информации, отмечающей конец и начало каждого сектора. Обычный объем сектора - 512 байт. На одной стороне размещается 80 дорожек. Каждая дорожка содержит 18 секторов.

Названия «сектор», «дорожка» введены для дисковых носителей. Во многих современных носителях информации, использующих хранение данных в энергонезависимой памяти, эти понятия поддерживаются реализацией файловых систем для обеспечения общих принципов работы.

В одной из распространенных файловых систем, FAT, предусматривается, что все файлы перечислены в каталогах. Обязателен корневой каталог, размещенный в определенном месте диска. О каждом из перечисленных в ката­логе файлов помимо обычных данных известно местоположение (в виде номера) начала файла.

Для того, чтобы определить, какие именно секторы занимает файл, применяется второй обязательный элемент файловой системы - таблица FAT (размещения файлов). Таблица представляет собой массив ячеек. Размер ячейки фиксирован и отражается в номере файловой системы (12, 16, 32 бита). Каждый файл занимает некоторую последовательность секторов, не обязательно последовательно расположенных. При сохранении файла в ячейку записывается номер следующего сектора в цепочке.

Поскольку на современных дисках секторов существенно больше, чем можно записать номеров в таблице, то секторы объединяют в кластеры. Именно кластерами и распределяется пространство на дисках, в результате эта файловая система неэффективно работает с мелкими файлами.

Сделать эту проблему менее острой позволяет увеличение размера ячейки в FAT. Это позволяет уменьшить размер кластера и увеличить количество адресов (файлов) на диске. В операционных системах, начиная с Windows 98, реализована FAT-32.

Помимо этой файловой системы, существует большое количество других, разработанных для разных операционных систем и решаемых задач.

Принципы хранения информации в компьютере

Вся информация в компьютере хранится на внешних несъемных или сменных носителях. Обычно это накопители на магнитных, оптических и магнитооптических дисках. Как можно найти любого человека по адресу его проживания, так можно найти любую информацию на дисках компьютера, используя для этого специально созданную адресную структуру хранения – файловую систему ОС. Каждая операционная система имеет свою файловую систему.

Внешние накопители на дисках, как и любые устройства компьютера, имеют свои физические номера . Так, активный жесткий магнитный диск, с которого загружается операционная система, всегда имеет номер 80h . На логическом же уровне пользователю удобнее работать с именами, поэтому накопителям на дисках присваиваются имена в виде букв латинского алфавита с двоеточием. Принято дисководы съемных магнитных дисков (дискет ) обозначать именами А: и В: . Жестким несъемным дискам (винчестерам ) присваивают имена, начиная с имени С:. Часто общее физическое пространство винчестера с помощью специальных программ делят на отдельные области – разделы. Это аналогично строительству складов на площади, до того лишь отведенной под них. В зависимости от назначения разделы могут быть основными (primary ) и дополнительными (extended ), а также активными (active ), системными (system ) и загрузочными (boot ). Деление жесткого диска на разделы может быть вызвано одной из следующих причин:

· в настоящее время объемы жестких дисков достигают нескольких десятков Гбайт и не все операционные системы могут работать с дисками большой емкости;

· желанием обеспечить защиту части информации, предоставляемую, например, операционной системой Windows NT . Эту информацию необходимо поместить в один из разделов с файловой структурой NTFS ;

· пользователю удобнее и проще работать, если разместить отдельные группы однотипной информации в разных разделах, чем всю ее хранить вместе.

Каждую такую область физического диска оформляют в виде логического диска (диска физически не существующего, а фиктивно созданного программным путем). Этим логическим дискам присваивают имена в виде букв, следующих за С:, то есть D:, E:, F:, G:,H: и т.д. Чтобы обратиться к тому или иному диску для записи или чтения информации, необходимо указать его имя (как при обращении к человеку). Диск, с которым в данный момент работает пользователь, называется текущим, или активным . Имя диска – высший уровень в системе адресации.

Информация на дисках записывается в файлы . Файл – это выделенная на диске или другом носителе область, имеющая имя. Имя файлу присваивает пользователь произвольно – по своему усмотрению. Как люди общаются между собой по именам, так и программы в компьютере обращаются к тому или иному файлу по имени. В файле может храниться различная однотипная информация. Это может быть графическое изображение или текст какого-либо документа, массив числовых данных или программа в машинных кодах, таблица расчета рентабельности предприятия или музыкальный сюжет. В последнее время появились файлы типа мультимедиа. В таком файле вперемешку хранится разнородная информация, например, видеокадры, музыкальные сюжеты и текст. Файл является еще одним уровнем системы адресации.

Файлы, относящиеся к какой-то проблеме или предназначенные для выполнения какой-то определенной работы, группируются и их имена и характеристики регистрируются в специальных таблицах или других структурах на диске – оглавлениях файлов – каталогах, или директориях . Создаваемые пользователями каталоги являются своеобразными файлами, поэтому им также присваивают имена и регистрируют в других каталогах. Имена им задает пользователь по своему усмотрению, но так, чтобы можно было по имени определить, какие файлы содержит данный каталог. Это будет третий из уровней системы адресации.

Таким образом, чтобы записать какой-то документ или программу на диск, необходимо, как почтовый адрес, указать путь : имя диска – имя каталога – имя файла, в который будет записываться информация. Аналогично и при чтении информации с диска.

Файлы.

Присвоение имен файлам и каталогам хотя и производится пользователем произвольно, однако зависит от используемой операционной системы. В MS-DOS и Windows 3.хх имена можно задавать, используя алфавит только латинского языка, причем длина имени не должна превышать восьми символов. Не разрешается в именах использовать символ пробела и знаки + : > ; “ < =. Строчные и прописные буквы воспринимаются одинаково.

Для того, чтобы подчеркнуть характер хранимой информации, файлу обычно присваивают тип или расширение имени. Присвоение типа осуществляет автоматически программа, в которой создавался файл. Тип или расширение файла может содержать не более трех символов из тех, что используются для имен и записывается вслед за именем через точку. Пробел после точки не допускается. Тип не обязателен и может отсутствовать. По типу файла легко определить его принадлежность. Например, PROG.PAS – легко догадаться, что файл с именем PROG хранит текст программы, написанный на языке программирования Паскаль. Часто имя файла и его расширение объединяют в одно понятие – полное имя файла. Примеры допустимых имен: START.BAT, MYFILE.DOC, GOD1995.TXT, P1.C, 123.BAS, HELP, PLAY_R.WAV. Примеры недопустимых имен файлов: 2>1.TXT (знак >), NINA+K (знак +), FORM 3.TXT (пробел перед цифрой 3), ОТЧЕТ. 98 (русские буквы).

Некоторые сочетания символов нельзя использовать в качестве имен файлов, так как операционная система резервирует их для обозначения системных устройств. К ним относятся:

PRN – имя принтера;

LPT1-LPT4 – устройства, подключаемые к параллельным портам 1-4;

CON – при вводе информации – это клавиатура, а при выводе – экран;

СOM1-COM4 – устройства, подключаемые к последовательным портам;

AUX – синоним порта СОМ1;

NUL – “пустое” устройство. Для него все операции ввода–вывода игнорируются, но программе сообщается, что ввод – вывод произошел успешно.

Файлы с такими именами операционная система просто не зарегистрирует . Иногда бывает очень удобно использовать имена системных устройств. Например, командой COPY легко можно вывести файл на принтер COPY PAP.TXT PRN или на экран COPY PAP.TXT CON , можно создать на диске файл с клавиатуры: COPY CON PAP.TXT . Вместе с тем, эти имена допустимы в качестве расширений файлов, например: TEST.PRN, 1A.CON . При создании файла или изменении его содержимого автоматически регистрируются дата и время по показаниям календаря и часов системы. Имя, тип, размер в байтах, дата и время создания файла фиксируются в каталоге и являются его характеристиками.



Во многих командах (копировать, удалить, распечатать и др.) для указания сразу нескольких файлов из одного каталога используются шаблоны, или обобщающие символы * и ?. Знак * обозначает любые допустимые для имен и расширений файлов символы, а знак ? обозначает любой одиночный символ. Примеры шаблонов:

I*.XLS – все файлы типа XLS , имеющие имена с буквы I;

*.ЕХЕ – все файлы с расширением ЕХЕ ;

*.??? – все файлы;

Р???.* – все файлы, имеющие имена с буквы Р не более 4-х символов.

Группу файлов из разных каталогов выделить нельзя.

Некоторые расширения имен файлов стандартизированы. Все файлы исполняемых программ имеют тип.СОМ или.ЕХЕ , файлы с расширением.ВАК содержат старые копии данных (такие файлы создают многие программы перед изменением их содержимого на случай ошибки, чтобы можно было восстановить хотя бы старую копию), расширение.ВАТ имеют так называемые командные файлы. Все инструментальные системы, а также и многие программы при создании текстов присваивают свои расширения файлам, хранящим эти тексты: .BAS – язык программирования Бейсик, .С – язык программирования Си, .PRG – многие системы управления базами данных, .PAS – язык программирования Паскаль, . DOC текстовый редактор Word , . XLS – табличный процессор Excel и т.д.

Файлам всегда присваиваются атрибуты (признаки): “только для чтения” (R/O-read only ), “скрытый” (Hid-hidden ), “системный” (Sys-system ), “архивный” (Arc-archive ). Файлу может быть установлен один или несколько атрибутов одновременно. Назначение их таково:

· атрибут R/O запрещает файл корректировать, предохраняя его от случайных или преднамеренных изменений. В такой файл записать что-либо нельзя, удалить его средствами MS-DOS невозможно, а в Norton Commander или в Windows – удалить можно только после дополнительного подтверждения. Тем не менее, такой файл можно копировать и модифицировать его копию;

· атрибуты Hid / Sys используются в системных файлах – файлах, обеспечивающих работу системы. Эти файлы используют все пользователи. Средствами MS-DOS имена таких файлов вывести на экран невозможно, они в каталогах невидимы;

· атрибут Arc устанавливается при создании или изменении файла автоматически и сбрасывается программами резервного копирования (Backup ) для обозначения того, что копия файла уже помещена в архив. Если такой атрибут установлен файлу, это означает, что для него не было сделано резервной копии.

Ограничение длины имени файлов не очень удобно. Сокращенное имя, да еще из латинских символов быстро забывается. Пользователю приходится выводить файл на экран, чтобы посмотреть, что он содержит. В современных операционных системах Windows 95 и выше, OS/2 и Windows NT файлам и каталогам, наряду с короткими, разрешается присваивать имена длиной до 254 символов. Кроме допустимых в MS-DOS, можно использовать символы русского алфавита, пробелы, символы + , ; = . . Это позволяет файлам присваивать наглядные и понятные имена. Прописные и строчные буквы в таких именах файлов должны различаться, что обеспечивает удобочитаемость. Однако в одном и том же каталоге файлы с одинаковыми именами, отличающимися только регистром букв, недопустимы – они просто не будут зарегистрированы.. Примеры:

Реферат на тему: Реформы Петра I.doc

1234.5678.97531.dat

Отчет по лабораторной работе № 6 по физике.txt

Не рекомендуется длинные имена задавать более 60 70 символов, так как в них неудобно ориентироваться. Имя файла вместе с указанным путем доступа к нему (спецификацией ) не должно составлять более 260 символов, иначе файл, помещенный в глубоко вложенный каталог, некоторыми программами не будет найден. Наконец, если имя такого файла зарегистрировано в корневом каталоге, то оно резко сокращает его объем. При задании длинного имени файлу автоматически генерируется и записывается короткое имя для того, чтобы обеспечить возможность использования файла и при работе в MS-DOS.

Каталоги.

При интенсивной работе на компьютере число файлов быстро растет, и “следить за порядком” на диске становится все сложнее. Структурировать и упорядочить дисковое пространство позволяют каталоги файлов. Каталоги представляют собой простые таблицы или более сложные структуры в виде деревьев (Windows NT), то есть по-существу это тоже файлы. В MS-DOS каталог представляет таблицу, состоящую из строк по 32 байта каждая. Такая же структура каталогов создается на дискетах, независимо от операционной системы, а также во всех Windows, кроме Windows NT. В одной строке (позиции) может быть зарегистрирован один файл или каталог пользователя, который регистрируется как обыкновенный файл. Каталог напоминает районный паспортный стол, где каждый из нас (файлов) имеет регистрационную карточку (позицию каталога) с данными о проживании. При подготовке диска к работе (форматировании) создается главный, или корневой каталог – основа адресной структуры системы. Имя этого каталога состоит из одного символа \ и присваивается программой форматирования автоматически. Принципиальное отличие корневого каталога от пользовательских состоит в том, что данные о нем нигде не зарегистрированы, как об остальных каталогах (просто нет над ним структуры, где бы он мог зарегистрироваться). А раз нет о нем информации, то изменить имя корневого каталога или удалить каталог с диска невозможно. В отличие от каталога, создаваемого пользователем, который может занимать все дисковое пространство, количество позиций в корневом каталоге ограничено и зависит от объема диска. После форматирования все позиции корневого каталога пустые, так как при форматировании вся информация на диске уничтожается. По мере записи информации на диск, позиции занимаются информацией о файлах или пользовательских каталогах. На рис. 21 приведен фрагмент корневого каталога системного диска в MS-DOS, выведенный на экран в виде, формируемом утилитой Нортона NU.EXE .

Операционная система, сокр. ОС (англ. operating system, OS) -- комплекс взаимосвязанных программ, предназначенных для управления ресурсами вычислительного устройства и организации взаимодействия с пользователем.

В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами (драйверами) -- с одной стороны -- и прикладными программами с другой. Гордеев А.В. Операционные системы: Учебник для вузов. -- 2-е изд. -- СПб.: Питер, 2007. -- 16 с.

Операционные системы разные, но их назначение и функции одинаковые. Операционная система является базовой и необходимой составляющей программного обеспечения компьютера, без нее компьютер не может работать в принципе.

Операционная система обеспечивает совместное функционирование всех устройств компьютера и предоставляет пользователю доступ к его ресурсам.

Современные операционные системы имеют сложную структуру, каждый элемент которой выполняет определенные функции по управлению компьютером.

Управление файловой системой. Процесс работы компьютера в определенном смысле сводится к обмену файлами между устройствами. В операционной системе имеются программные модули, управляющие файловой системой.

Командный процессор. В состав операционной системы входит специальная программа - командный процессор, - которая запрашивает у пользователя команды и выполняет их.

Пользователь может дать команду запуска программы, выполнения какой-либо операции над файлами (копирование, удаление, переименование), вывода документа на печать и так далее. Операционная система должна эту команду выполнить.

Графический интерфейс. Для упрощения работы пользователя в состав современных операционных систем, и в частности в состав Windows, входят программные модули, создающие графический пользовательский интерфейс. В операционных системах с графическим интерфейсом пользователь может вводить команды с помощью мыши, тогда как в режиме командной строки необходимо вводить команды с помощью клавиатуры.

Сервисные программы. В состав операционной системы входят также сервисные программы, или утилиты. Такие программы позволяют обслуживать диски (проверять, сжимать, дефрагментировать и так далее), выполнять операции с файлами (архивировать и так далее), работать в компьютерных сетях и так далее.

Справочная система. Для удобства пользователя в состав операционной системы обычно входит также справочная система. Справочная система позволяет оперативно получить необходимую информацию как о функционировании операционной системы в целом, так и о работе ее отдельных модулей.

Процесс работы компьютера в определенном смысле сводится к обмену файлами между периферийными устройствами, т.е. необходимо уметь управлять файловой системой. Ядром операционной системы является программа, которая обеспечивает управление файловой системой.

Пользователь общается с компьютером через устройства ввода информации (клавиатура, мышь). После ввода команды операционной системы специальная программа, которая называется командный процессор, расшифровывает команды и исполняет их.

Процесс общения пользователя с компьютером должен быть удобным. В состав современных операционных систем (Windows) обязательно входят модули, создающие графический интерфейс.

Таким образом, в структуру операционной системы входят следующие модули:

  • 1) базовый модуль, управляющий файловой системой;
  • 2) командный процессор, расшифровывающий и выполняющий команды;
  • 3) драйверы периферийных устройств;
  • 4) модули, обеспечивающие графический интерфейс.

Файлы операционной системы находятся на диске (жестком или гибком). Однако программы могут выполняться, только если они находятся в оперативной памяти, поэтому файлы операционной системы необходимо загрузить в оперативную память.

Для функционирования компьютера обязательно должны находиться в оперативной памяти базовый модуль, командный процессор и драйверы подключенных устройств. Модули операционной системы, обеспечивающие графический интерфейс, могут быть загружены по желанию пользователя. В операционной системе Windows 95 выбор варианта загрузки представлен в виде меню. правовой информация нормативный акт программный

После включения компьютера производится загрузка операционной системы в оперативную память, т.е. выполняется программа загрузки. Однако для того чтобы компьютер выполнял какую-нибудь программу, эта программа должна уже находиться в оперативной памяти. Выход из этого противоречия состоит в последовательной, поэтапной загрузке.

В соответствии с английским названием этого процесса -- bootstrap, -- система как бы «поднимет себя за шнурки ботинок». В системном блоке компьютера находится ПЗУ (BIOS), в котором содержатся программы тестирования компьютера и первого этапа загрузки операционной системы. После включения компьютера эти программы начинают выполняться, причем информация о ходе этого процесса высвечивается на экране дисплея.

На этом этапе процессор обращается к диску и ищет на определенном месте (в начале диска) наличие очень небольшой программы-загрузчика BOOT. Программа-загрузчик считывается в память, и ей передается управление. В свою очередь она ищет на диске базовый модуль операционной системы, загружает его в память и передает ему управление.

В состав базового модуля операционной системы входит основной загрузчик, который ищет остальные модули операционной системы и загружает их в оперативную память.

Информация в компьютере хранится в памяти или на различных носителях, таких как: гибкие и жесткие диски, или компакт-диски. При выключении питания компьютера информация, хранящаяся в памяти компьютера, теряется, а хранящаяся на дисках - нет. Для уверенной работы за компьютером следует знать основные принципы хранения информации на компьютерных дисках. Кузнецов П.У. Информационные технологии в юридическои? деятельности. Учебник для бакалавров. - М.: Юраи?т, 2011. С. 27.

Вся информация, предназначенная для долговременного использования, хранится в файлах. Файл представляет собой последовательность байт, объединенных по какому-то признаку и имеющих имя. Система хранения и работы с файлами в компьютере называется файловой системой.

Для удобства файлы хранятся в различных папках, которые расположены на дисках. В компьютере может быть установлено несколько дисков. Любой гибкий диск, жесткий диск, компакт-диск, цифровой видеодиск или сетевой диск мы будем называть просто диском, так как принципы организации хранения файлов на них идентичны. Каждому диску присваивается буква латинского алфавита от А до Z, причем существуют некоторые правила обозначения. Буквой А обозначается гибкий диск, буквой С - основной диск вашего компьютера, где расположена система Windows. Буквой D и последующими буквами обозначаются остальные диски. После буквы, обозначающей диск, ставится символ двоеточия “:”, чтобы показать, что буква обозначает именно диск, например А: или С:. Кроме буквы, каждый диск имеет свое уникальное имя, также называемое меткой. Чаще всего при указании диска используется метка и буквенное обозначение в скобках. Например, надпись Main (С:) означает, что основной диск вашего компьютера имеет метку Main.

На каждом диске помещается множество различных файлов. Любой файл может располагаться как прямо на диске, так и в произвольной папке, которая в свою очередь также может располагаться в другой папке

То, что файлы могут находиться в разных папках, позволяет расположить, на диске несколько файлов с одинаковыми именами. Структура хранения информации на диске, при котором одни папки могут располагаться в других папках, называется иерархической или древовидной. Такая структура действительно похожа на реальное дерево, на котором каждый листок представляет собой отдельный файл, а ветка - папку. Листок может расти как непосредственно из ствола, так и из любой ветки.

При указании пути к файлу имена папок отделяются друг от друга и от имени диска с помощью символа обратной косой черты “”, например, С:Мои документыМои рисункиЯ в молодости.jpg. Данная запись означает, что файл с именем Я в молодости.jpg расположен в папке Мои рисунки. Эта папка находится в папке Мои документы, размещенной на диске С:.

Обратите внимание, что в рассмотренном примере имя файла содержит в себе символ точки и как бы состоит из двух частей -до точки и после нее. Часть имени, расположенная после точки, называется расширением и используется для обозначения вида информации, хранящейся в файле. Например, расширение doc обозначает текстовый файл, wav - файл, содержащий звуки, а jpg - изображение. В Windows XP многие расширения файлов не показываются, так что, скорее всего, в нашем примере файл будет называться просто Я в молодости, но Windows будет знать, что работает с изображением.

Важным понятием в Windows XP является понятие ярлыка. На любой объект Windows можно сослаться из другого места. Такая ссылка и называется ярлыком. Например, в какой-то папке расположен часто использующийся рисунок. Для быстрого доступа к этому рисунку из разных мест можно поместить в эти места ярлыки, содержащие адрес реального местонахождения рисунка. Удаление и перемещение ярлыка не влияет на расположение оригинального файла, поэтому использование ярлыков может обеспечить дополнительную защиту. Информатика и информационные технологии / Под ред. Ю.Д. Романовои?. - М.: ЭКСМО, 2011. С. 23.

Системные утилиты (Утилита от англ. utility или tool) -- вспомогательная компьютерная программа в составе общего программного обеспечения для выполнения специализированных типовых задач, связанных с работой оборудования и операционной системы (ОС).

Утилиты предоставляют доступ к возможностям (параметрам, настройкам, установкам), недоступным без их применения, либо делают процесс изменения некоторых параметров проще (автоматизируют его).

Утилиты могут входить в состав операционных систем, идти в комплекте со специализированным оборудованием или распространяться отдельно.

Виды утилит по функциям:

  • 1) Диспетчеры файлов
  • 2) Архиваторы (с возможным сжатием данных);
  • 3) Просмотрщики;
  • 4) Утилиты для диагностики аппаратного или программного обеспечения;
  • 5) Утилиты восстановления после сбоев;
  • 6) Оптимизатор диска -- вид утилиты для оптимизации размещения файлов на дисковом накопителе, например, путём дефрагментации диска;
  • 7) Шредеры файлов;
  • 8) Деинсталлятор -- программа для удаления программного обеспечения;
  • 9) Утилиты управления процессами. Леонтьев В.П. Самые полезные программы: утилиты. -- ОЛМА-ПРЕСС Образование, 2004. -- 22 с.

Драйверы устройств. К магистрали компьютера подключаются различные устройства (дисководы, монитор, клавиатура, мышь, принтер и др.). Каждое устройство выполняет определенную функцию (ввод информации, хранение информации, вывод информации), при этом техническая реализация устройств существенно различается.

В состав операционной системы входят драйверы устройств, специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами, а также позволяют производить настройку некоторых параметров устройств. Каждому устройству соответствует свой драйвер.

Технология "Plug and Play" (подключи и играй) позволяет автоматизировать подключение к компьютеру новых устройств и обеспечивает их конфигурирование. В процессе установки Windows определяет тип и конкретную модель установленного устройства и подключает необходимый для его функционирования драйвер. При включении компьютера производится загрузка драйверов в оперативную память.

Пользователь имеет возможность вручную установить или переустановить драйверы. Информатика и информационные технологии / Под ред. Ю.Д. Романовои?. - М.: ЭКСМО, 2011. С. 22.

Оперативная память – память, предназначенная для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память изготавливается в виде модулей памяти (плоских пластин с электрическими контактами, по бокам которых размещаются большие интегральные схемы памяти). У модулей оперативной памяти большое количество показателей (тип, вид, тайминги, частота), которые существенно влияют на работу памяти.

При работе память компьютера обращается к одному из двух типов так называемых «хранилищ» информации. Энергозависимая память компьютера – ОЗУ (Оперативное Запоминающее Устройство) – это такое хранилище информации, которое должно быть постоянно обновлено, чтобы в нем хранилась разная информация, необходимая в данный момент для работы компьютера. Она автоматически очищается при отключении компьютера от электропитания.

Статическая память компьютера – ПЗУ (Постоянное Запоминающее Устройство) – это хранилище информации, рассчитанное на неизменное и долговременное хранение файлов, которые должны находиться в памяти компьютера, после того как компьютер будет отключен от электропитания.

Внешняя (долговременная) память – это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Для работы с внешней памятью необходимо наличие накопителя (дисковода – устройства, обеспечивающего запись и считывание информации) и устройства хранения – носителя. Устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками.

Гибкие магнитные диски . Съемные магнитные диски (дискеты) вставляют в компьютер через специальную щель системного блока – дисковод. На самом деле это не один диск, а группа дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Основными параметрами гибких дисков являются: технологический размер (измеряется в дюймах), плотность записи (измеряется в кратных единицах) и полная емкость.

Жёсткие магнитные диски или НЖМД, винчестер , – основное хранилище информации больших объёмов, основанное на принципе магнитной записи, скрыт внутри корпуса системного блока. Является основным накопителем данных в большинстве компьютеров. Информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала. Носитель информации совмещён с накопителем, приводами блоком электроники и обычно установлен внутри системного блока компьютера.

Внешние жесткие диски – динамичные системы хранения данных. Они удобны при ведении бизнеса, предоставляют свободу творчества, взаимодействия в любое время, в любом месте.

Внешний жесткий диск прост в использовании благодаря своей портативности, поддерживают высокоскоростной интерфейс для быстрой передачи данных.

Оптические дисководы и диски . Собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помощью оптического излучения. Диски обычно плоские, их основа сделана из поликарбоната, на который нанесён специальный слой для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него.

Лазерные дисководы и диски. Лазерные дисководы (CD-ROM и DVD-ROM) используют оптический принцип чтения информации. На лазерных CD-ROM (CD – CompactDisk, компакт-диск) и DVD-ROM (DVD – Digital Video Disk, цифровой видеодиск) дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна, что отражено во второй части их названий: ROM (ReadOnlyMemory – только чтение). Производятся такие диски путем штамповки и имеют серебристый цвет. На дисках CD-RW и DVD-RW (RW – ReWntable, перезаписываемый), которые имеют «платиновый» оттенок, информация может быть записана многократно.

Первое поколение оптических дисков: лазерный диск, компакт-диск, магнитооптический диск.

Второепоколениеоптическихдисков: DVD, MiniDisc, Digital Multilayer Disk, DataPlay, Fluorescent Multilayer Disc, GD-ROM (Compact Disk Read-Only Memory), Universal Media Disc.

Третьепоколениеоптическихдисков: Blu-rayDisc, HDDVD, Forward Versatile Disc, Ultra Density Optical, Professional Disc for DATA, Versatile Multilayer Disc.

Четвертоепоколениеоптическихдисков: HolographicVersatileDisc, SuperRensDisc.

Flash- память . Flash-память – это энергонезависимый тип памяти. Она представляет собой микросхему, помещенную в миниатюрный плоский корпус. Для считывания или записи информации карта памяти вставляется в специальные накопители, встроенные в мобильные устройства или подключаемые к компьютеру через USB-порт. Карты flash-памяти не имеют в своем составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах (портативных компьютерах, цифровых камерах и др.). Их существует огромное множество: SD, MMC, CompactFlashType I и II, MemoryStick, MemoryStickDuo, TransFlash, miniSD, microSD, RS-MMC, SmartMedia, MiniDisk и др.

Co mpactFlash – пожалуй, самая древняя флеш-память: первый экземпляр был выпущен еще в далеком 1994 году компанией SanDisk. Всего существует два типа карт CompactFlash: CF Type I, CF Type II, причем отличаются они лишь толщиной корпуса.

SD (SecureDigital) – также был создан усилиями компаний SanDisk, Panasonic и Toshiba. В этих картах используются криптограммы (шифрование данных), что обеспечивает защиту данных от несанкционированного копирования или перезаписи.

MMC (MultiMediaCard) – является плодом работы компаний SanDisk и Siemens. В каждой MMC есть собственный контроллер памяти. При этом толщина мультимедийных карт почти на треть меньше, чем у «шпионского» брата, что позволяет использовать MMC-накопители в различных миниатюрных устройствах.

RS-MMС (ReducedSize MMC) – также известны как MMCmobile. Они отличаются от MMC лишь уменьшенными размерами и используются в основном в мобильных телефонах.

Memory Stick Duo – являетсяэволюциейсамих Memory Stick. Уменьшились размеры и энергопотребление карт, но вместе с тем уменьшилась и максимальная емкость. В остальном полностью аналогична обычной MS.

SmartMedia – стандарт, который был разработан Toshiba в далеком 1995 году. Особенностями данного стандарта можно считать очень низкое энергопотребление и отсутствие собственного контроллера, скорость работы крайне низка и максимальный объем памяти составляет всего-навсего 256 Мб, что ничтожно мало по сегодняшним меркам, особенно учитывая размеры карты

ХDPicture (ExtremeDigital) – были созданы компаниями FujiFilm и Olympus для замены порядком устаревшего формата SmartMedia. Применяются данные карты преимущественно в цифровых фотоаппаратах этих компаний.

Также в последнее время широкое распространение получили USB флеш-накопители («флешка», USB-драйв, USB-диск), практически вытеснившие дискеты и CD.

Хранение информации в Интернете

Интернет – это объединение компьютеров по всему миру в единую информационную сеть. По-другому Интернет называют мировой компьютерной сетью.

Для соединения компьютеров используют обычные телефонные линии и прибор модем. Модем преобразует информацию к виду, пригодному для передачи по телефону.

Таким образом, информация, хранящаяся по всему миру, становится доступна каждому, кто имеет компьютер, телефон и модем.

Телефонная связь не является единственным способом соединения компьютеров. Гораздо быстрее информация передается по оптическим кабелям и с помощью радиосвязи. Эти каналы постепенно вытесняют в Интернет телефонные соединения.

В Интернете можно найти ответ практически на любой вопрос. Прочитать свежую газету, заглянуть в библиотеку, заказать билеты на самолет, купить товары, завести друзей по переписке.

Мы знаем, что программы и данные в компьютере хранятся на жестком диске в виде файлов.

Файл – это определенное количество информации, имеющее имя и хранящееся в долговременной (внешней) памяти.

Имя файла – последовательность символов, позволяющая пользователю ориентироваться в файловой системе. Имя файла состоит из двух частей, разделенных точкой: собственное имя файла и расширение, определяющее его тип. Собственное имя файла может содержать от 1 до 255 символов. Кроме латинского допускается применение русского алфавита.

Расширение – это сочетание букв и чисел длиной от одного до трёх символов, который дополняет само имя, но чаще указывает на формат и тип хранящихся в файле данных. От собственно имени файла оно отделяется точкой и является его необязательной частью. Расширения служат для идентификации типа (формата) файла. С их помощью пользователь и программное обеспечение компьютера может определить тип данных, хранящихся в файле.

Расширение принято указывать в виде *.rar, т.е. перед символами расширения добавляют звездочку и точку, где звездочка символизирует любое имя файла.

Расширение может указывать не только на тип информации, которая хранится в файле (изображение, медиа файл, текстовый файл), но и на способ кодирования этой информации. Например, *.gif, *.jpg, *.bmp, *.raw, *.png и др. – это расширения файлов изображений, но способы кодирования изображения в таких файлах разный, и не каждая программа, открывающая один тип, сможет открыть другой.

Существуют файлы, не имеющие расширения, обычно это системные файлы.

Файл открывается той программой, в которой был создан, или универсальной программой.

Примеры расширений файлов разных типов:

*doc, *, xdoc, *.rtf, *.txt, *.pdf – текстовые документы (содержимое таких файлов текст и открываются они в программе для работы с текстом – Письмо.doc, Каталог.xls, текст.txt).

*.jpg, *.gif, *.jpeg, *.bmp, *.raw, *.png, *.emf, *.ico, *tif, *.tiff, *.jp2, *.pcx, *.tga, *.wbmp – графическое изображение (фотографии и картинки – Рисунок.gif, Природа.tif, Фото.jpg, Рисунок.bmp).