Процессоры. Вскрытие и доработка картриджа процессора Intel Pentium II


Выпущенный в 1997, процессор Pentium II являлся адаптацией Pentium Pro для массового рынка. Он был очень похож на Pentium Pro, но кэш-память различалась. Вместо использования кэша на той же частоте, что и процессор (это было дорого), 512 кбайт кэша L2 работали на половинной частоте. Кроме того, Pentium II оставил классический сокет в пользу картриджа, содержащего процессор и кэш второго уровня, который теперь размещался в картридже, а не на материнской плате или упаковке процессора.

Среди новых функций по сравнению с Pentium Pro можно отметить поддержку MMX (SIMD) и удвоенный размер кэша L1. Первый Pentium III (Katmai) был очень похож на Pentium II. Выпущенный в 1999 году, он добавил поддержку инструкций SSE (SIMD), но в остальном остался идентичен.

Intel Pentium II and III
Кодовое название Klamath (Pentium II 0,35 мкм), Deschutes (Pentium II 0,25 мкм), Katmai (Pentium III)
Дата выпуска 1997, 1998, 1999
Архитектура 32 бита
Шина данных 64 бита
Шина адреса 36 битов (32 бита на P III)
Макс. объём памяти 64 Гбайт (4 Гбайт на P III)
Кэш L1 16 + 16 кбайт
Кэш L2 Внешний, 512 кбайт (1/2 частоты CPU)
Тактовая частота 233-300 МГц (Klamath), 300-450 МГц (Deschutes), 450-600 МГц (Klamath)
FSB 66-100-133 МГц
FPU Встроенный
SIMD MMX (SSE)
Техпроцесс 350 нм (Klamath), 250 нм (Deschutes, Katmai)
Число транзисторов 7 500 000 + кэш (Pentium II), 9 500 000 + кэш (Pentium III)
Энергопотребление 25-35 Вт
Напряжение 2,8 В (0,35 мкм), 2 В (0,25 мкм)
Площадь кристалла 204 мм² (0,35 мкм), 131 мм 2 (0,25 мкм), 128 мм 2 (PIII) + кэш
Сокет Slot 1

Pentium II и III оснащались 512 кбайт кэша L2 (31 млн. транзисторов). Но одна разновидность процессора Pentium II оснащалась кэшем L2 объёмом 256 кбайт на кристалле - Pentium II Mobile Dixon. Он использовал 180-нм техпроцесс и был существенно быстрее, чем настольные версии.


В конце 90-х годов Intel выпустила две широко известных марки процессоров: Celeron и Xeon. Первый был нацелен на "бюджетный" рынок, а последней - на серверы и рабочие станции. Первый Celeron (Covington) представлял собой Pentium II без кэша второго уровня и давал слишком низкую производительность, а Pentium II Xeon, напротив, оснащался кэшем большого объёма. Обе марки до сих пор существуют: Celeron для рынка начального уровня (как правило, со сниженным размером кэша и менее скоростной FSB) и Xeon для серверов (с быстрой FSB, иногда с большим кэшем и более высокими тактовыми частотами).

Intel быстро добавила к Celeron 128 кбайт кэша второго уровня в модели Mendocino. Celeron 300A славился своими прекрасными возможностями разгона, позволяя достигать прирост частоты 50% или больше по сравнению со штатной частотой - весьма немало в то время.

Intel Celeron и Intel Xeon
Кодовое название Covington, Mendocino Drake
Дата выпуска 1998 1998
Архитектура 32 бита 32 бита
Шина данных 64 бита 64 бита
Шина адреса 32 бита 36 битов
Макс. объём памяти 4 Гбайт 64 Гбайт
Кэш L1 16 + 16 кбайт 16 + 16 кбайт
Кэш L2 0 кбайт/128 кбайт (встроенный, на частоте CPU) Внешний, 512 - 2408 кбайт (на частоте CPU)
Тактовая частота 266-300 МГц/300-533 МГц 400-450 МГц
FSB 66 МГц 100 МГц
FPU Встроенный Встроенный
SIMD MMX MMX
Техпроцесс 250 нм 250 нм
Число транзисторов 7 500 000/19 000 000 7 500 000 + кэш
Энергопотребление 16-28 Вт 30-46 Вт
Напряжение 2 В 2 В
Площадь кристалла 131 мм²/154 мм 2 131 мм² + кэш
Сокет Slot1/Socket 370 PPGA Slot 2

Подобно Pentium II, процессор Xeon обладал внешним кэшем L2 внутри картриджа процессора. Его ёмкость составляла от 512 кбайт до 2 Мбайт, а число транзисторов - от 31 до 124 млн.

Pentium III достигает 1 ГГц


Нажмите на картинку для увеличения.

Pentium III Coppermine стал первым серийным процессором x86, который смог достичь частоты 1 ГГц; была выпущена даже версия на 1,13 ГГц, но она быстро покинула рынок из-за проблем со стабильностью. Новая версия Pentium III отличалась улучшенным кэшем второго уровня - теперь он "поселился" на кристалл. Он был быстрее, чем 512 кбайт внешнего кэша на первой модели, и в то время рекламировался как функция, увеличивающая скорость работы в Интернете. Процессор был выпущен ещё в трёх версиях: серверной (Xeon), начального уровня (Celeron) и мобильной (с первым вариантом технологии SpeedStep).

Intel Pentium III
Кодовое название Coppermine
Дата выпуска 1999
Архитектура 32 бита
Шина данных 64 бита
Шина адреса 32 бита
Макс. объём памяти 4 Гбайт
Кэш L1 16 + 16 кбайт
Кэш L2 Встроенный, 256 кбайт (на частоте CPU)
Тактовая частота 500-1133 МГц
FSB 100-133 МГЦ
FPU Встроенный
SIMD MMX (SSE)
Техпроцесс 180 нм
Число транзисторов 28,1 млн.
Энергопотребление 25-35 Вт
Напряжение 1,6 В, 1,8 В
Площадь кристалла 106 мм²
Сокет Slot 1-Socket 370 FCPGA

В 2002 году появилась чуть более улучшенная версия Tualatin с большим кэшем L2 (512 кбайт) и 130-нм техпроцессом. Она позиционировалась на серверы (PIII-S) и мобильные устройства, и в компьютерах потребительского уровня встречалась нечасто.

Если вы решились-таки на покупку системы с процессором Pentium MMX, повремените. Может быть, стоит выбрать другой процессор. Во время подготовки этой статьи компания AMD объявила о выпуске долгожданной микросхемы следующего поколения K6-PR2-233, которая, как предполагается, составит конкуренцию кристаллу Pentium II (ранее он был известен под именем Klamath) фирмы Intel. Поставки процессора Pentium II - следующей версии микросхемы Pentium Pro - начались в мае. Как и процессор Pentium MMX, кристаллы этих двух фирм поддерживают мультимедийные инструкции и должны потеснить Pentium MMX с рынка.

Насколько хороши Pentium II и K6? И сможет ли компания AMD составить достойную конкуренцию Intel? Тестовая лаборатория журнала PC World провела тестирование первых опытных образцов ПК на базе процессоров K6 и Pentium II. Машины испытывались с помощью пакета PC WorldBench, содержащего контрольные задачи с использованием стандартных деловых приложений. Кроме того, тестировалась производительность машин с оптимизированными для MMX мультимедийными и графическими программами. Система AMD была выполнена на кристалле K6-PR2-233, а машина Intel была оснащена 266-МГц процессором Pentium II.

Каков же результат? Оба опытных образца продемонстрировали новые рекорды производительности. Система AMD K6 справилась с тестовыми заданиями быстрее, чем любая из машин, ранее протестированных в лаборатории журнала PC World, обогнав прежнего чемпиона - модель фирмы Sys Technology на базе 200-МГц процессора Pentium Pro. В тесте с пакетом PC WorldBench система на кристалле K6 пришла к финишу с результатом 251 единица.

Однако этот рекорд продержался недолго. Новым чемпионом стала система с 266-МГц процессором Pentium II, которая обошла машину на базе K6-PR2-233 на 4%, а машину фирмы Sys Technology с 200-МГц кристаллом Pentium Pro - на 10%. Компьютер с процессором Pentium II продемонстрировал приблизительно такую производительность, какую от него и можно было ожидать, учитывая тактовую частоту, объем кэш-памяти и поддержку инструкций MMX.

В гонке на скорость победил Pentium II, однако означает ли это поражение для K6? Компания Intel будет позиционировать Pentium II как процессор высшего уровня, предназначенный для мощных рабочих станций и мультимедийных машин ценой от 3500 долл. В конце концов менее обеспеченные покупатели, не имеющие возможности купить ПК на базе Pentium II, могут, по мнению Intel, приобрести машину с кристаллом Pentium MMX. Однако у производителей ПК свои планы, поэтому вполне вероятно, что цена хорошо сконфигурированных машин на Pentium II не превысит 3000 долл. Тем временем фирма AMD установила на свои процессоры K6 привлекательную цену: машины с кристаллом K6-PR2-233 можно будет купить примерно за 2500 долл. (в России, как обычно, цены будут заметно ниже. - Прим. ред. ). Все это должно очень понравиться покупателям - конкуренция вынуждает производителей снижать цены и ускорять продвижение новых ЦП.

Самые быстрые ПК

Насколько высока производительность этих новых процессоров? Опытный образец машины AMD, оснащенный 1-Мбайт кэшем второго уровня и исключительно быстрым жестким диском объемом 4,55 Гбайт с интерфейсом SCSI, прошел тесты PC WorldBench с изумительно высоким результатом - 251 единица (для сравнения: у машины фирмы Sys Technology на базе процессора Pentium Pro этот показатель равен 236). В четырех из шести приложений, используемых в пакете PC WorldBench, микросхема AMD установила рекорды быстродействия, а в двух оставшихся ее отставание было минимальным.

Но не успели еще высохнуть чернила в книге рекордов, как опытный образец системы на базе процессора Pentium II промчался по тестам PC WorldBench с показателем 260 единиц. Система продемонстрировала самые высокие показатели во всех приложениях.

Еще большее превосходство новых процессоров над другими выявилось в тестах с MMX-приложениями. Напомним, что K6 - первый процессор, выпущенный не фирмой Intel, поддерживающий инструкции MMX, благодаря чему достигается значительное ускорение работы с видео-, аудио- и другими мультимедийными задачами с учетом технологии MMX. Система на процессоре K6 опередила все машины с микросхемами Pentium-200 MMX, протестированные в лаборатории журнала PC World, но чуть отстала от ПК на базе 266-МГц кристалла Pentium II. Машина с процессором Intel продемонстрировала лучшие результаты в тестах с трехмерной графикой: на выполнение операций с перерисовкой объектов в пакете Ray Dream 3D Studio компании Fractal Design ей потребовалось всего 55 с, тогда как у ПК на процессоре K6 на то же самое ушло 68 с. Стандартные системы с 200-МГц кристаллом Pentium MMX справляются с этим заданием за 80 с.

В тестах с программами Adobe Photoshop и Macromedia Director, в которых основная часть работы приходилась на использование фильтров и анимацию, преимущество в скорости у Pentium II было менее заметно. При воспроизведении анимированных изображений в пакете Director система на Pentium II выводила 91 кадр в секунду, а система с процессором K6 - 87 кадров в секунду. В тесте с программой Photoshop при операциях с фильтрацией и цветовым преобразованием бесспорным лидером был на самом деле процессор K6: на выполнение заданий у него ушло 47 с, тогда как Pentium II справился с тем же самым за 59 с. Однако Pentium II вырвался вперед в тесте с масштабированием изображения, затратив на него менее 45 с (кристаллу K6 на это потребовалось почти 68 с), поэтому в общем зачете победителем оказался Pentium II. Оба ЦП продемонстрировали заметный прирост производительности по сравнению с Pentium MMX.

Intel (и AMD) inside

Высокое быстродействие опытного образца ПК на базе K6 отчасти объясняется быстрым жестким диском с интерфейсом SCSI и 1-Мбайт кэшем второго уровня (в машине с Pentium II его объем составлял 512 Кбайт). Тем не менее полученные результаты подтверждают предсказания AMD о том, что K6 составит конкуренцию Pentium II, и это будет еще более справедливо, когда появятся версии микросхем K6-PR2-266 и K6-PR2-300 (ожидаются уже в этом году).

Сегодня и K6, и Pentium II производятся по технологическому процессу с проектной нормой 0,35 мкм, т. е. размер транзисторных элементов составляет обычно 0,35 мкм. Микросхема K6-PR2-300, вероятно, будет первой, выпускаемой по 0,25-микронному процессу, благодаря чему снизятся потребляемая ею мощность и тепловыделение. Представители AMD воздерживаются от обсуждения возможности использования процессора K6 в блокнотных ПК, но, по словам редактора журнала Microprocessor Report Ленли Гвеннапа, "кристалл K6 готов к путешествиям".

В свою очередь, процессор Pentium II является дальнейшим развитием кристалла Pentium Pro. Процессор Pentium II обеспечивает лучшую производительность при работе с 16- и 32-разрядным кодом Windows 95, чем его предшественник, и, кроме того, имеет MMX-расширение и увеличенный с 16 до 32 Кбайт кэш первого уровня. (Напомним, что при выполнении 16-разрядных программ 200-МГц процессор Pentium Pro уступает 200-МГц процессору Pentium MMX, но при работе с 32-разрядными приложениями впереди оказывается Pentium Pro.) Чтобы поднять тактовую частоту работы ядра ЦП до 233 МГц и выше, кэш второго уровня Pentium II расположен на одном картридже SEC с процессором.

Как и K6, процессор Pentium II производится с технологической нормой 0,35 мкм, но со временем Intel планирует перейти на более совершенный 0,25-микронный процесс. Микросхема с нормой 0,25 мкм носит кодовое название Deschutes, она должна появиться к концу года. Это будет первый процессор класса P6, предназначенный для продуктивной работы в блокнотных ПК.

Цена или скорость?

Сегодня более выгодным представляется выбор кристалла K6. Предполагается, что цена микросхемы K6-PR2-233 для производителей ПК составит 469 долл., что на 130-250 долл. меньше, чем цена 266-МГц процессора Pentium II. По соотношению цена/производительность кристалл K6 может соревноваться даже с Pentium MMX. Но что еще лучше - K6 устанавливается в стандартный разъем Socket 7 на обычных ныне выпускающихся системных платах для процессора Pentium, тогда как для Pentium II требуется системная плата новой конструкции, допускающая установку картриджа SEC. У компании AMD есть шансы сделать K6 массовым процессором, если только ей удастся заключить контракты с производителями систем.

По словам Гвеннапа, фирма AMD имеет опыт работы с ведущими поставщиками ПК и способна выпустить 10-15 млн. микросхем K6 в этом году и до 40 млн. - в следующем, после чего сможет перейти на производство версии кристалла с меньшей проектной нормой. Такие большие объемы выпуска могут привлечь к K6 внимание основных производителей систем. Компания AST рассматривает возможность выпуска ПК на базе K6, а фирмы Everex, Polywell и Robotec уже заявили, что будут продавать машины на этих микросхемах.

Однако в пользу Pentium II говорит более высокая тактовая частота, поскольку тесно связанный с ЦП кэш второго уровня работает значительно быстрее, чем обычный кэш, который расположен на системной плате (и используется процессором K6). Кроме того, корпорация Intel на системных платах для процессора Pentium II будет применять новую графическую шину AGP (Accelerated Graphics Port), которая, как ожидается, существенно улучшит производительность и качество работы программ трехмерной графики.

Какое место займет среди этих микросхем кристалл M2 - представитель следующего поколения процессоров фирмы Cyrix? По мнению Гвеннапа, M2 (он должен появиться в июне) не сможет сравняться по быстродействию ни с K6, ни с Pentium II.

Новая жизнь Pentium

Несмотря на высокую производительность Pentium II, жизнь процессора Pentium MMX не заканчивается. Выпущенный Intel новый набор микросхем 430TX оптимизирует продуктивность таких ключевых компонентов, как системная память и жесткий диск. В лаборатории журнала PC World побывали две настольные машины на базе 200-МГц процессоров Pentium MMX, в которых был применен набор 430TX. В тестах PC WorldBench эти машины продемонстрировали показатели 234 и 238 единиц. Самый большой прирост производительности оказался в тестах с MMX-приложениями. В контрольной задаче с редактированием изображения в пакете Photoshop один из этих ПК показал наивысшую среди всех систем (за исключением ПК с 266-МГц процессором Pentium II) производительность.

Если вы собираетесь приобрести машину с процессором Pentium MMX, выбирайте модель с набором микросхем 430TX. Домашним пользователям должны понравиться новые особенности этого набора, например функция Always On, которая, по словам представителей Intel, позволяет машине "просыпаться" из режима приостановки при возникновении таких задач, как, скажем, обработка электронной почты. Благодаря лучшему управлению потреблением энергии и поддержке быстрой синхронной динамической памяти (SDRAM) набор 430TX также должен найти широкое применение в блокнотных ПК.

Что купить?

Какой системе отдать предпочтение? Машины на базе процессора K6 имеют лучшее сочетание цена/производительность, однако вам, возможно, придется поискать поставщиков ПК, которые устанавливают в свои машины процессоры AMD. Кроме того, может пройти несколько месяцев, прежде чем AMD выпустит достаточное количество микросхем, поэтому вам придется подождать. Однако если ваш бюджет не позволяет тратить значительные суммы, система с процессором K6 - это то, что нужно.

Тем, кто хочет приобрести быструю систему среднего или высшего класса, больше подойдет Pentium II. Производственные мощности Intel позволяют выпустить значительно больше процессоров Pentium II, чем AMD сможет поставить на рынок кристаллов K6, но на "разгонку" опять-таки понадобится время. Цены на системы с Pentium II могут быть разными, но нетрудно предположить, что ценовая политика фирм будет весьма агрессивной. Хорошо сконфигурированный ПК на базе Pentium II вы сможете купить примерно за 3000 долл.

Если процессор K6 вас почему-либо не устраивает, а денег на систему с Pentium II нет, выбор очевиден: ПК с процессором Pentium MMX и набором микросхем 430TX, который позволит достичь максимальной производительности при работе с мультимедийными программами.

Новые ЦП - новые рекорды скорости

Система Процессор ОЗУ, Мбайт Кэш второго уровня, Кбайт Показатель PC WordBench
Pentium II-266 Pentium II-266 32 256 260
AMD K6-PR2-233 AMD K6-PR2-233 32 1024 251
Polywell Poly 500 TX1 Pentium MMX-200 32 512 238
MicroExperts MMXP-5000 Pentium MMX-200 32 512 234
"Средний" ПК из 10 машин Pentium MMX-200 32 512 231

Мультимедийные приложения

Система Анимация Macromedia Director
(кадров в секунду)
Pentium II-266 91
MicroExperts MMXP-5000 86
AMD K6-PR2-233 87
Polywell Poly 500 TX1 85
"Средний" ПК из 10 машин 80

Методика тестирования

Деловые приложения: все системы тестировались с помощью пакета PC WorldBench. Чем выше показатель PC WorldBench, тем выше производительность. Описание тестов PC WorldBench можно найти на Web-узле журнала PC World (http://www.pcworld. com/testing ).

Мультимедийные приложения: каждая система тестировалась с помощью серии программ, оптимизированных для MMX.

В тесте с пакетом Adobe Photoshop 4.0 измерялось время, необходимое для выполнения нескольких операций по редактированию изображений. В тесте с программой Ray Dream 3D Studio фирмы Fractal Design измерялось, сколько времени перерисовываются обсчитанные трехмерные объекты двух уровней сложности. В тесте с пакетом Macromedia Director 5.0 воспроизводился насыщенный графикой исполнимый файл.

Если вы решились-таки на покупку системы с процессором Pentium MMX, повремените. Может быть, стоит выбрать другой процессор. Во время подготовки этой статьи компания AMD объявила о выпуске долгожданной микросхемы следующего поколения K6-PR2-233, которая, как предполагается, составит конкуренцию кристаллу Pentium II (ранее он был известен под именем Klamath) фирмы Intel. Поставки процессора Pentium II - следующей версии микросхемы Pentium Pro - начались в мае. Как и процессор Pentium MMX, кристаллы этих двух фирм поддерживают мультимедийные инструкции и должны потеснить Pentium MMX с рынка.

Насколько хороши Pentium II и K6? И сможет ли компания AMD составить достойную конкуренцию Intel? Тестовая лаборатория журнала PC World провела тестирование первых опытных образцов ПК на базе процессоров K6 и Pentium II. Машины испытывались с помощью пакета PC WorldBench, содержащего контрольные задачи с использованием стандартных деловых приложений. Кроме того, тестировалась производительность машин с оптимизированными для MMX мультимедийными и графическими программами. Система AMD была выполнена на кристалле K6-PR2-233, а машина Intel была оснащена 266-МГц процессором Pentium II.

Каков же результат? Оба опытных образца продемонстрировали новые рекорды производительности. Система AMD K6 справилась с тестовыми заданиями быстрее, чем любая из машин, ранее протестированных в лаборатории журнала PC World, обогнав прежнего чемпиона - модель фирмы Sys Technology на базе 200-МГц процессора Pentium Pro. В тесте с пакетом PC WorldBench система на кристалле K6 пришла к финишу с результатом 251 единица.

Однако этот рекорд продержался недолго. Новым чемпионом стала система с 266-МГц процессором Pentium II, которая обошла машину на базе K6-PR2-233 на 4%, а машину фирмы Sys Technology с 200-МГц кристаллом Pentium Pro - на 10%. Компьютер с процессором Pentium II продемонстрировал приблизительно такую производительность, какую от него и можно было ожидать, учитывая тактовую частоту, объем кэш-памяти и поддержку инструкций MMX.

В гонке на скорость победил Pentium II, однако означает ли это поражение для K6? Компания Intel будет позиционировать Pentium II как процессор высшего уровня, предназначенный для мощных рабочих станций и мультимедийных машин ценой от 3500 долл. В конце концов менее обеспеченные покупатели, не имеющие возможности купить ПК на базе Pentium II, могут, по мнению Intel, приобрести машину с кристаллом Pentium MMX. Однако у производителей ПК свои планы, поэтому вполне вероятно, что цена хорошо сконфигурированных машин на Pentium II не превысит 3000 долл. Тем временем фирма AMD установила на свои процессоры K6 привлекательную цену: машины с кристаллом K6-PR2-233 можно будет купить примерно за 2500 долл. (в России, как обычно, цены будут заметно ниже. - Прим. ред. ). Все это должно очень понравиться покупателям - конкуренция вынуждает производителей снижать цены и ускорять продвижение новых ЦП.

Самые быстрые ПК

Насколько высока производительность этих новых процессоров? Опытный образец машины AMD, оснащенный 1-Мбайт кэшем второго уровня и исключительно быстрым жестким диском объемом 4,55 Гбайт с интерфейсом SCSI, прошел тесты PC WorldBench с изумительно высоким результатом - 251 единица (для сравнения: у машины фирмы Sys Technology на базе процессора Pentium Pro этот показатель равен 236). В четырех из шести приложений, используемых в пакете PC WorldBench, микросхема AMD установила рекорды быстродействия, а в двух оставшихся ее отставание было минимальным.

Но не успели еще высохнуть чернила в книге рекордов, как опытный образец системы на базе процессора Pentium II промчался по тестам PC WorldBench с показателем 260 единиц. Система продемонстрировала самые высокие показатели во всех приложениях.

Еще большее превосходство новых процессоров над другими выявилось в тестах с MMX-приложениями. Напомним, что K6 - первый процессор, выпущенный не фирмой Intel, поддерживающий инструкции MMX, благодаря чему достигается значительное ускорение работы с видео-, аудио- и другими мультимедийными задачами с учетом технологии MMX. Система на процессоре K6 опередила все машины с микросхемами Pentium-200 MMX, протестированные в лаборатории журнала PC World, но чуть отстала от ПК на базе 266-МГц кристалла Pentium II. Машина с процессором Intel продемонстрировала лучшие результаты в тестах с трехмерной графикой: на выполнение операций с перерисовкой объектов в пакете Ray Dream 3D Studio компании Fractal Design ей потребовалось всего 55 с, тогда как у ПК на процессоре K6 на то же самое ушло 68 с. Стандартные системы с 200-МГц кристаллом Pentium MMX справляются с этим заданием за 80 с.

В тестах с программами Adobe Photoshop и Macromedia Director, в которых основная часть работы приходилась на использование фильтров и анимацию, преимущество в скорости у Pentium II было менее заметно. При воспроизведении анимированных изображений в пакете Director система на Pentium II выводила 91 кадр в секунду, а система с процессором K6 - 87 кадров в секунду. В тесте с программой Photoshop при операциях с фильтрацией и цветовым преобразованием бесспорным лидером был на самом деле процессор K6: на выполнение заданий у него ушло 47 с, тогда как Pentium II справился с тем же самым за 59 с. Однако Pentium II вырвался вперед в тесте с масштабированием изображения, затратив на него менее 45 с (кристаллу K6 на это потребовалось почти 68 с), поэтому в общем зачете победителем оказался Pentium II. Оба ЦП продемонстрировали заметный прирост производительности по сравнению с Pentium MMX.

Intel (и AMD) inside

Высокое быстродействие опытного образца ПК на базе K6 отчасти объясняется быстрым жестким диском с интерфейсом SCSI и 1-Мбайт кэшем второго уровня (в машине с Pentium II его объем составлял 512 Кбайт). Тем не менее полученные результаты подтверждают предсказания AMD о том, что K6 составит конкуренцию Pentium II, и это будет еще более справедливо, когда появятся версии микросхем K6-PR2-266 и K6-PR2-300 (ожидаются уже в этом году).

Сегодня и K6, и Pentium II производятся по технологическому процессу с проектной нормой 0,35 мкм, т. е. размер транзисторных элементов составляет обычно 0,35 мкм. Микросхема K6-PR2-300, вероятно, будет первой, выпускаемой по 0,25-микронному процессу, благодаря чему снизятся потребляемая ею мощность и тепловыделение. Представители AMD воздерживаются от обсуждения возможности использования процессора K6 в блокнотных ПК, но, по словам редактора журнала Microprocessor Report Ленли Гвеннапа, "кристалл K6 готов к путешествиям".

В свою очередь, процессор Pentium II является дальнейшим развитием кристалла Pentium Pro. Процессор Pentium II обеспечивает лучшую производительность при работе с 16- и 32-разрядным кодом Windows 95, чем его предшественник, и, кроме того, имеет MMX-расширение и увеличенный с 16 до 32 Кбайт кэш первого уровня. (Напомним, что при выполнении 16-разрядных программ 200-МГц процессор Pentium Pro уступает 200-МГц процессору Pentium MMX, но при работе с 32-разрядными приложениями впереди оказывается Pentium Pro.) Чтобы поднять тактовую частоту работы ядра ЦП до 233 МГц и выше, кэш второго уровня Pentium II расположен на одном картридже SEC с процессором.

Как и K6, процессор Pentium II производится с технологической нормой 0,35 мкм, но со временем Intel планирует перейти на более совершенный 0,25-микронный процесс. Микросхема с нормой 0,25 мкм носит кодовое название Deschutes, она должна появиться к концу года. Это будет первый процессор класса P6, предназначенный для продуктивной работы в блокнотных ПК.

Цена или скорость?

Сегодня более выгодным представляется выбор кристалла K6. Предполагается, что цена микросхемы K6-PR2-233 для производителей ПК составит 469 долл., что на 130-250 долл. меньше, чем цена 266-МГц процессора Pentium II. По соотношению цена/производительность кристалл K6 может соревноваться даже с Pentium MMX. Но что еще лучше - K6 устанавливается в стандартный разъем Socket 7 на обычных ныне выпускающихся системных платах для процессора Pentium, тогда как для Pentium II требуется системная плата новой конструкции, допускающая установку картриджа SEC. У компании AMD есть шансы сделать K6 массовым процессором, если только ей удастся заключить контракты с производителями систем.

По словам Гвеннапа, фирма AMD имеет опыт работы с ведущими поставщиками ПК и способна выпустить 10-15 млн. микросхем K6 в этом году и до 40 млн. - в следующем, после чего сможет перейти на производство версии кристалла с меньшей проектной нормой. Такие большие объемы выпуска могут привлечь к K6 внимание основных производителей систем. Компания AST рассматривает возможность выпуска ПК на базе K6, а фирмы Everex, Polywell и Robotec уже заявили, что будут продавать машины на этих микросхемах.

Однако в пользу Pentium II говорит более высокая тактовая частота, поскольку тесно связанный с ЦП кэш второго уровня работает значительно быстрее, чем обычный кэш, который расположен на системной плате (и используется процессором K6). Кроме того, корпорация Intel на системных платах для процессора Pentium II будет применять новую графическую шину AGP (Accelerated Graphics Port), которая, как ожидается, существенно улучшит производительность и качество работы программ трехмерной графики.

Какое место займет среди этих микросхем кристалл M2 - представитель следующего поколения процессоров фирмы Cyrix? По мнению Гвеннапа, M2 (он должен появиться в июне) не сможет сравняться по быстродействию ни с K6, ни с Pentium II.

Новая жизнь Pentium

Несмотря на высокую производительность Pentium II, жизнь процессора Pentium MMX не заканчивается. Выпущенный Intel новый набор микросхем 430TX оптимизирует продуктивность таких ключевых компонентов, как системная память и жесткий диск. В лаборатории журнала PC World побывали две настольные машины на базе 200-МГц процессоров Pentium MMX, в которых был применен набор 430TX. В тестах PC WorldBench эти машины продемонстрировали показатели 234 и 238 единиц. Самый большой прирост производительности оказался в тестах с MMX-приложениями. В контрольной задаче с редактированием изображения в пакете Photoshop один из этих ПК показал наивысшую среди всех систем (за исключением ПК с 266-МГц процессором Pentium II) производительность.

Если вы собираетесь приобрести машину с процессором Pentium MMX, выбирайте модель с набором микросхем 430TX. Домашним пользователям должны понравиться новые особенности этого набора, например функция Always On, которая, по словам представителей Intel, позволяет машине "просыпаться" из режима приостановки при возникновении таких задач, как, скажем, обработка электронной почты. Благодаря лучшему управлению потреблением энергии и поддержке быстрой синхронной динамической памяти (SDRAM) набор 430TX также должен найти широкое применение в блокнотных ПК.

Что купить?

Какой системе отдать предпочтение? Машины на базе процессора K6 имеют лучшее сочетание цена/производительность, однако вам, возможно, придется поискать поставщиков ПК, которые устанавливают в свои машины процессоры AMD. Кроме того, может пройти несколько месяцев, прежде чем AMD выпустит достаточное количество микросхем, поэтому вам придется подождать. Однако если ваш бюджет не позволяет тратить значительные суммы, система с процессором K6 - это то, что нужно.

Тем, кто хочет приобрести быструю систему среднего или высшего класса, больше подойдет Pentium II. Производственные мощности Intel позволяют выпустить значительно больше процессоров Pentium II, чем AMD сможет поставить на рынок кристаллов K6, но на "разгонку" опять-таки понадобится время. Цены на системы с Pentium II могут быть разными, но нетрудно предположить, что ценовая политика фирм будет весьма агрессивной. Хорошо сконфигурированный ПК на базе Pentium II вы сможете купить примерно за 3000 долл.

Если процессор K6 вас почему-либо не устраивает, а денег на систему с Pentium II нет, выбор очевиден: ПК с процессором Pentium MMX и набором микросхем 430TX, который позволит достичь максимальной производительности при работе с мультимедийными программами.

Новые ЦП - новые рекорды скорости

Система Процессор ОЗУ, Мбайт Кэш второго уровня, Кбайт Показатель PC WordBench
Pentium II-266 Pentium II-266 32 256 260
AMD K6-PR2-233 AMD K6-PR2-233 32 1024 251
Polywell Poly 500 TX1 Pentium MMX-200 32 512 238
MicroExperts MMXP-5000 Pentium MMX-200 32 512 234
"Средний" ПК из 10 машин Pentium MMX-200 32 512 231

Мультимедийные приложения

Система Анимация Macromedia Director
(кадров в секунду)
Pentium II-266 91
MicroExperts MMXP-5000 86
AMD K6-PR2-233 87
Polywell Poly 500 TX1 85
"Средний" ПК из 10 машин 80

Методика тестирования

Деловые приложения: все системы тестировались с помощью пакета PC WorldBench. Чем выше показатель PC WorldBench, тем выше производительность. Описание тестов PC WorldBench можно найти на Web-узле журнала PC World (http://www.pcworld. com/testing ).

Мультимедийные приложения: каждая система тестировалась с помощью серии программ, оптимизированных для MMX.

В тесте с пакетом Adobe Photoshop 4.0 измерялось время, необходимое для выполнения нескольких операций по редактированию изображений. В тесте с программой Ray Dream 3D Studio фирмы Fractal Design измерялось, сколько времени перерисовываются обсчитанные трехмерные объекты двух уровней сложности. В тесте с пакетом Macromedia Director 5.0 воспроизводился насыщенный графикой исполнимый файл.

Внутренняя структура (микроархитектура) процессора Pentuim 4 значительно отличается от микроархитектуры предшествующих моделей Pentium II, Pentium III, Celeron. Наряду с микроархитектурой существенно изменилась и архитектура систем, реализуемых на его основе. Новая системная архитектура, использующая процессор Pentuim 4 и набор специализированных микросхем Chipset 850, выпускаемых компанией Intel, обеспечивают значительное повышение производительности - от 23 до 87% при решении различного класса задач. В 2001 году планируется быстрый рост производства Pentium 4 и повышение его тактовой частоты до 2 ГГц. В 2002 году объём выпуска Pentium 4 превысит Pentium III, и этот процессор станет основной продукцией компании Intel.

Развитие архитектуры IA-32 в семействе Pentium

Общая архитектура процессора определяет комплекс средств, предоставляемых пользователю для решения различных задач. Эта архитектура задаёт базовую систему команд процессора и реализуемых способов адресации, набор программно-доступных регистров (регистровая модель), возможные режимы работы процессора и обращения к памяти и внешним устройствам (организация памяти и реализация обмена по системной шине), средства обработки прерываний и исключений.

В процессоре Pentium 4 реализуется архитектура IA-32 (Intel Architеcture-32), общая для всех 32-разрядных микропроцессоров Intel, начиная с i386. В табл. 1 приведены основные модели процессоров, в которых используется эта архитектура, и некоторые их характеристики. Отметим, что модели Pentium II Xeon и Pentium III Xeon ориентированы на работу в высокопроизводительных мультипроцессорных системах (серверах, рабочих станциях). Для этих же приложений планируется выпуск в 2001 году модификации процессора Pentium 4 с поддержкой мультипроцессорного режима работы (название проекта - Foster).

Таблица 1. Некоторые характеристики процессоров архитектуры IA-32

Модель, начало выпуска Число транзисторов Тактовая частота, МГц Объем внутренней кэш-памяти
i386, октябрь 1985 г. 275 тыс. до 40 Нет
i486, апрель 1989 г. 1,2 млн. до 100 8 Кбайт - команды
8 Кбайт - данные
Pentium, март 1993 г. 3,1 млн. до 200 8 Кбайт - команды
8 Кбайт - данные
Pentium Pro, ноябрь 1995 г. 5,5 млн. до 200 8 Кбайт - команды
8 Кбайт - данные
Pentium MMX,
январь 1997 г.
4,5 млн. до 233 8 Кбайт - команды
8 Кбайт - данные
Pentium II,
май 1997 г.
(Xeon, июнь 1998 г.)
7,5 млн. до 450 16 Кбайт - команды
16 Кбайт - данные
Celeron,
аперль 1998 г.
до 750 128 Кбайт - общий
Pentium III,
февраль 1999 г.
(Xeon, март 1999 г.)
8,5 млн. до 1000

(до 700)

16 Кбайт - команды
16 Кбайт - данные
Pentium 4,
ноябрь 2000 г.
(Foster, 2001 г.)
42 млн. до 1500 256 Кбайт - общтй
12 К - микрокоманлы
8 Кбайт - данные

История архитектуры IA-32 насчитывает уже более 15 лет, и её основные черты достаточно полно описаны в ряде монографий (например, в ). Поэтому ограничимся их кратким обзором.

В процессе развития IA-32 производилось расширение возможностей обработки данных, представленных в различных форматах (рис. 1). Процессоры i386 выполняли обработку только целочисленных операндов. Для обработки чисел с “плавающей точкой” использовался внешний сопроцессор i387, подключаемый к микропроцессору. В состав процессоров i486 и последующих моделей Pentium введён специальный блок FPU (Floating-Point Unit ), выполняющий операции над числами с “плавающей точкой”. В процессорах Pentium MMX была впервые реализована групповая обработка нескольких целочисленных операндов разрядностью 1, 2, 4 или 8 байт с помощью одной команды. Такая обработка обеспечивается введением дополнительного блока MMX (Milti-Media Extension - Мультимедийное Расширение). Название блока отражает его направленность на обработку видео- и аудиоданных, когда одновременное выполнение одной операции над несколькими операндами позволяет существенно повысить скорость обработки изображений и звуковых сигналов. Начиная с модели Pentium III, в процессоры вводится блок SSE (Streaming SIMD Extension - Потоковое SIMD-расширение) для групповой обработки чисел с “плавающей точкой”.

Рис. 1. Эволюция архитектуры IA-32

Таким образом, если первые модели процессоров Pentium выполняли только пооперандную обработку данных по принципу “Одна команда – Одни данные” (SISD - Single Instruction – Single Data ), то, начиная с процессора Pentium MMX, реализуется также их групповая обработка по принципу “Одна команда – Много данных” (SIMD - Single Instruction – Multiple Data ).

Соответственно, расширяется и набор регистров процессора, используемых для промежуточного хранения данных (рис. 2). Кроме 32-разрядных регистров для хранения целочисленных операндов, процессоры Pentium содержат 80-разрядные регистры, которые обслуживают блоки FPU и MMX. При работе FPU регистры ST0-ST7 образуют кольцевой стек, в котором хранятся числа с “плавающей точкой”, представленные в формате с расширенной точностью (80 разрядов). При реализации MMX-операций они используются как 64-разрядные регистры MM0-MM7, где могут храниться несколько операндов (8 8-разрядных, 4 16-разрядных, 2 32-разрядных или один 64-разрядный), над которыми одновременно выполняется поступившая в процессор команда (арифметическая, логическая, сдвиг и ряд других).

Рис. 2. Регистры хранения данных в процессорах Pentium

Блок SSE-2, введённый в состав процессора Pentium 4, значительно расширяет возможности обработки нескольких операндов по принципу SIMD, по сравнению с блоком SSE в модели Pentium III. Этот блок реализует 144 новые команды, обеспечивающих одновременное выполнение операций над несколькими операндами, которые раcполагаются в памяти и в 128-разрядных регистрах XMM0-XMM7. В регистрах могут храниться и одновременно обрабатываться 2 числа с “плавающей точкой” в формате двойной точности (64 разряда) или 4 числа в формате одинарной точности (32 разряда). Этот блок может также одновременно обрабатывать целочисленные операнды: 16 8-разрядных, 8 16-разрядных, 4 32-разрядных или 2 64-разрядных. В результате производительность процессора Pentium 4 при выполнении таких операций оказывается вдвое выше, чем Pentium III.

Операции SSE-2 позволяют существенно повысить эффективность процессора при реализации трёхмерной графики и Интернет-приложений, обеспечении сжатия и кодирования аудио- и видеоданных и в ряде других применений.

Введение большой группы команд SSE-2 является основной особенностью реализованного в Pentium 4 варианта архитектуры IA-32. Что касается базового набора команд и используемых способов адресации операндов, то они практически полностью совпадают с набором команд и способов адресации в предыдущих моделях Pentium. Процессор обеспечивает реальный и защищённый режимы работы, реализует сегментную и страничную организации памяти. Таким образом пользователь имеет дело с хорошо знакомым набором регистров и способов адресации, может работать с базовой системой команд и известными вариантами реализации прерываний и исключений, которые характерны для всех моделей семейства Pentium .

Микроархитектура процессоров Pentium 4

Основные особенности процессора Pentium 4 связаны с его микроархитектурой. Микроархитектура процессора определяет реализацию его внутренней структуры, принципы выполнения поступающих команд, способы размещения и обработки данных. Как анонсировала компания Intel, новая микроархитектура процессора Pentium 4, получившая название NetBurst (пакетно-сетевая), ориентирована на эффективную работу с Интернет-приложениями. Необходимо отметить, что в микроархитектуре NetBurst реализованы многие принципы, использованные в предыдущей модели Pentium III (микроархитектура P6 ). Характерными чертами этой микроархитектуры являются:

  • гарвардская структура с разделением потоков команд и данных;
  • суперскалярная архитектура, обеспечивающая одновременное выполнение нескольких команд в параллельно работающих исполнительных устройствах;
  • динамическое изменение последовательности команд (выполнение команд с опережением - спекулятивное выполнение);
  • конвейерное исполнение команд;
  • предсказание направления ветвлений.

Практическая реализация данных принципов в структуре процессора Pentium 4 имеет ряд существенных особенностей (рис. 3).

Рис. 3. Общая структура Pentium 4

Гарвардская внутренняя структура реализуется путём разделения потоков команд и данных, поступающих от системной шины через блок внешнего интерфейса и размещённую на кристалле процессора общую кэш-память 2-го уровня (L2) ёмкостью 256 Кбайт. Такое размещение позволяет сократить время выборки команд и данных по сравнению с Pentuim III, где эта кэш-память располагается на отдельном кристалле, смонтированном в общем корпусе (картридже) с процессором.

Блок внешнего интерфейса реализует обмен пpоцессоpа с системной шиной, к которой подключается память, контроллеры ввода/вывода и другие активные устройства системы. Обмен по системной шине осуществляется с помощью 64-разрядной двунаправленной шины данных, 41-разрядной шины адреса (33 адресных линии А35-3 и 8 линий выбора байтов BE7-0#), обеспечивающей адресацию до 64 Гбайт внешней памяти.

Дешифратор команд работает вместе с памятью микропрограмм, формируя последовательность микрокоманд, обеспечивающих выполнение поступивших команд. Декодированные команды загружаются в кэш-память микрокоманд, откуда они выбираются для исполнения. Кэш-память может хранить до 12000 микрокоманд. После её заполнения практически любая команда будет храниться в ней в декодированом виде. Поэтому при поступлении очередной команды блок трассировки выбирает из этой кэш-памяти необходимые микрокоманды, обеспечивающие её выполнение. Если в потоке команд оказывается команда условного перехода (ветвления программы), то включается механизм предсказания ветвления, который формирует адрес следующей выбираемой команды до того, как будет определено условие выполнения перехода.

После формирования потоков микрокоманд производится выделение регистров, необходимых для выполнения декодированных команд. Эта процедура реализуется блоком распределения регистров, который выделяет для каждого указанного в команде логического регистра (регистра целочисленных операндов EAX, ECX и других, регистра операндов с плавающей точкой ST0-ST7 или регистра блоков MMX, SSE, рис. 2) один из 128 физических регистров, входящих в состав блоков регистров замещения (БРЗ).

Эта процедура позволяет выполнять команды, использующие одни и те же логические регистры, одновременно или с изменением их последовательности.

Выбранные микрокоманды размещаются в очереди микрокоманд. В ней содержатся микрокоманды, реализующие выполнение 126 поступивших и декодированных команд, которые затем направляются в исполнительные устройства по мере готовности операндов. Отметим, что в процессорах Pentium III в очереди находятся микрокоманды для 40 поступивших команд. Значительное увеличение числа команд, стоящих в очереди, позволяет более эффективно организовать поток их исполнения, изменяя последовательность выполнения команд и выделяя команды, которые могут выполняться параллельно. Эти функции реализует блок распределения микрокоманд. Он выбирает микрокоманды из очереди не в порядке их поступления, а по мере готовности соответствующих операндов и исполнительных устройств. В результате команды, поступившие позже, могут быть выполнены до ранее выбранных команд. При этом реализуется одновременное выполнение нескольких микрокоманд (команд) в параллельно работающих исполнительных устройствах. Таким образом естественный порядок следования команд нарушается, чтобы обеспечить более полную загрузку параллельно включенных исполнительных устройств и повысить производительность процессора.

Суперскалярная архитектура реализуется путём организации исполнительного ядра процессора в виде ряда параллельно работающих блоков. Арифметико-логические блоки ALU производят обработку целочисленных операндов, которые поступают из заданных регистров БРЗ. В эти же регистры заносится и результат операции. При этом проверяются также условия ветвления для команд условных переходов и выдаются сигналы перезагрузки конвейера команд в случае неправильно предсказанного ветвления. Исполнительное ядро работает с повышенной скоростью выполнения операций. Например, микрокоманда сложения целочисленных операндов при тактовой частоте процессора 1,5 МГц выполняется всего за 0,36 нс.

Адреса операндов, выбираемых из памяти, вычисляются блоком формирования адреса (БФА), который реализует интерфейс с кэш-памятью данных 1-го уровня (L1) ёмкостью 8 Кбайт. В соответствии с заданными в декодированных командах способами адресации формируются 48 адресов для загрузки операндов из памяти в регистр БРЗ и 24 адреса для записи из регистра в память (в Pentium III формируются 16 адресов для загрузки регистров и 12 адресов для записи в память). При этом БФА формирует адреса операндов для команд, которые ещё не поступили на выполнение. При обращении к памяти БФА одновременно выдаёт адреса двух операндов: один для загрузки операнда в заданный регистр БРЗ, второй - для пересылки результата из БРЗ в память. Таким образом реализуется процедура предварительного чтения данных для последующей их обработки в исполнительных блоках, которая называется спекулятивной выборкой.

Аналогичным образом организуется параллельная работа блоков SSE, FPU, MMX, которые используют отдельный набор регистров и блок формирования адресов операндов.

При выборке операнда из памяти производится обращение к кэш-памяти данных (L1), которая имеет отдельные порты для чтения и записи. За один такт производится выборка операндов для двух команд. Время обращения к этой кэш-памяти составляет 1,42 нс при тактовой частоте 1,5 ГГц, что в 2,1 раза меньше, чем при обращении к кэш-памяти данных в процессоре Pentium III, работающем на частоте 1,0 ГГц.

При формировании адресов обеспечивается обращение к заданному сегменту памяти. Каждый сегмент может делиться на страницы, размещаемые в различных местах адресного пространства. Блоки трансляции адреса обеспечивают формирование физических адресов команд и данных при использовании страничной организации памяти. Для сокращения времени трансляции используется внутренняя буферная память, которая хранит базовые адреса наиболее часто используемых страниц.

В Pentuim 4 используется гиперконвейерная технология выполнения команд, при которой число ступеней конвейера достигает 20 (в Pentium - 5 ступеней, в Pentium III - 11). Таким образом одновременно в процессе выполнения может находиться до 20 команд, находящихся на разных стадиях (ступенях) их реализации.

Эффективность конвейера резко снижается из-за необходимости его перезагрузки при выполнении условных ветвлений, когда требуется произвести очистку всех предыдущих ступеней и выбрать команду из другой ветви программы. Чтобы сократить потери времени, связанные с перезагрузкой конвейера, используется блок предсказания ветвлений. Его основной частью является ассоциативная память, называемая буфером адресов ветвлений (BTB - Branch Target Buffer), в которой хранятся 4092 адреса ранее выполненных переходов. Отметим, что в BTB процессора Pentium III хранятся адреса только 512 переходов. Кроме того, BTB содержит биты, хранящие предысторию ветвления, которые указывают, выполнялся ли переход при предыдущих выборках данной команды. При поступлении очередной команды условного перехода указанный в ней адрес сравнивается с содержимым BTB. Если этот адрес не содержится в BTB, то есть ранее не производились переходы по данному адресу, то предсказывается отсутствие ветвления. В этом случае продолжается выборка и декодирование команд, следующих за командой перехода. При совпадении указанного в команде адреса перехода с каким-либо из адресов, хранящихся в BTB, производится анализ предыстории. В процессе анализа определяется чаще всего реализуемое направление ветвления, а также выявляются чередующиеся переходы. Если предсказывается выполнение ветвления, то выбирается и загружается в конвейер команда, размещённая по предсказанному адресу. Усовершенствованный блок предсказания ветвления, используемый в Pentuim 4, обеспечивает 90-% вероятность правильного предсказания. Таким образом резко уменьшается число перезагрузок конвейера при неправильном предсказании ветвления.

Реализация микроархитектуры

Реализованное в Pentium 4 значительное изменение микроархитектуры и повышение производительности потребовали введения дополнительных аппаратных средств. На кристалле процессора располагаются 42 млн. транзисторов (Pentium III содержал 8,5 млн. транзисторов без учёта кэш-памяти 2-го уровня, размещённой на отдельном кристалле). В настоящее время для изготовления Pentium 4 используется КМОП-технология с разрешающей способностью 0,18 мкм. Выпускаемые модели Pentium 4 имеют максимальные тактовые частоты 1,4 и 1,5 ГГц и размещаются в 423-выводных корпусах типа PPGA (Plastic Pin Grid Array). В 2001 году компания Intel планирует переход к 0,13-мкм технологии изготовления с использованием 6-слойной системы медных соединений. При этом будет обеспечено повышение тактовой частоты процессоров Pentium 4 до 2 ГГц и выше.

Архитектура систем на базе Pentium 4

Практическая реализация потенциальных возможностей процессора Pentium 4 обеспечивается при использовании набора специализированных микросхем, необходимых для построения на его основе цифровых систем различного назначения. Для реализации систем на базе Pentium 4 компания Intel выпускает набор микросхем Chipset 850, в который входят:

  • контроллер-концентратор памяти MCH (Memory Controller Hub) типа Intel 82850;
  • контроллер-концентратор для устройств ввода/вывода ICH2 (I/O Controller Hub) типа Intel 82801BA;
  • контроллер микрокода FWH (FirmWare Hub) типа Intel 82802AB.

Типовая архитектура систем, реализованных на базе процессора Pentium 4 с использованием набора Chipset 850, показана на рис. 4. Основной особенностью этой архитектуры является использование новой системной шины FSB, обеспечивающей обмен со скоростью 3,2 Гбайт/c, что соответствует частоте передачи данных 400 МГц. Такая скорость реализуется путём применения нового типа сверхбыстродействующей двухканальной памяти RDRAM и контроллера-концентратора MCH, обеспечивающего 4 канала обмена с памятью этого типа.

Рис. 4. Типовая архитектура систем на базе Pentium 4

Контроллер MCH выполняет обмен с оперативной памятью типа Direct RAMBUS ёмкостью от 128 Мбайт (минимально допустимый объём) до 2 Гбайт с помощью сдвоенных каналов. Память реализуется на основе микросхем быстродействующей двухканальной RDRAM-памяти типа PC800 или PC600, выпускаемых компанией RAMBUS. Таким образом общий доступ к оперативной памяти осуществляется с использованием четырёх каналов обмена. При тактовой частоте канала 100 МГц обеспечивается общая частота обмена, эквивалентная 400 МГц, что в 3 раза выше, чем для наиболее быстродействующих современных системных плат, работающих на частоте 133 МГц.

При использовании в системах микросхем памяти типа RDRAM могут возникнуть проблемы, которые связаны с их высокой стоимостью и определёнными сложностями их поставки. Поэтому в настоящее время разрабатываются варианты применения других типов быстродействующих микросхем динамической памяти, выпускаемых компаниями NEC, Toshiba, Samsung, Hyndai, Infineon.

К контроллеру MCH подключается также универсальный разъём AGP4X, используемый для связи с графическим адаптером при скорости передачи данных более 1 Гбайт/с.

Контроллер ICH2 служит для подключения различных внешних устройств с использованием интерфейса ULTRA ATA/66/100. Этот интерфейс реализует обмен с жёстким диском со скоростью 66 или 100 Мбайт/c. ICH2 также обеспечивает прямой доступ внешних устройств к памяти со скоростью 33 Мбайт/с при помощи интерфейса ULTRA DMA/33. Контроллер служит для подключения последовательных портов с шиной USB, связи с локальной сетью Ethernet и параллельного обмена по шине PCI. Обеспечивается возможность реализации каналов для передачи аудиоданных.

Для создания систем на базе Pentim 4 компания Intel выпускает системные (“материнские”) платы типа D850GB. На плате размером 30,5ґ24,4 см2 монтируется микропроцессор и другие необходимые микросхемы, имеются 4 разъёма для включения RIMM-модулей памяти RDRAM. На плате размещаются также флэш-память ёмкостью 4 Мбит, хранящая систему ввода/вывода BIOS, 5 слотов шины PCI и 2 контроллера последовательной шины USB, обслуживающих 4 USB-порта. Кроме того, имеются порты для подключения клавиатуры и мыши, 2 интерфейса для подключения жёстких дисков и один для гибких дисков, один последовательный (COM) и один параллельный (LPT) порты.

Ведущие производители персональных компьютеров: Compaq, Dell, IBM, Hewlett-Packard, Acer, Siemens, Fujitsu, Toshiba, NEC и ряд других - начали поставку новых моделей компьютеров на основе процессоров Pentium 4. Предполагается, что средняя стоимость этих компьютеров в конце I полугодия 2001 года снизится до уровня 1600 долларов.

Области применения и реализуемое повышение производительности

Основной областью применения процессора Pentium 4 являются высокопроизводительные настольные персональные компьютеры (desktop PC). Процессор Pentium 4 не поддерживает реализацию мультипроцессорных систем, которая обеспечивается процессорами Pentium III Xeon. В 2001 году компания Intel планирует начать производство процессора Foster, который представляет собой модификацию Pentium 4, предназначенную для работы в мультипроцессорных системах. Процессор Foster будет использоваться в серверах и рабочих станциях.

Процессоры, которые будут выпускаться компанией Intel в 2001 году, ориентированы на области применения, перечисленные в табл. 2.

Таблица 2. Области применения перспективных процессоров фирмы INTEL

Новые 64-разрядные процессоры Itanium, архитектура которых принципиально отличается от архитектуры IA-32, используемой в семействе Pentium, будут применяться в наиболее высокопроизводительных серверах и рабочих станциях. В сфере персональных компьютеров процессоры Pentium 4 будут постепенно вытеснять Pentium III. Процессор Foster будет заменять Pentium III Xeon в серверах и рабочих станциях средней производительности. Процессоры Celeron сохранят свои доминирующие позиции в персональных компьютерах для массового потребителя.

Основным преимуществом процессора Pentium 4, по сравнению с предыдущей моделью Pentium III, является существенное повышение производительности при реализации различных приложений. В табл. 3 даны результаты тестовых испытаний производительности компьютеров на основе Pentium 4 (тактовая частота 1,5 ГГц, частота обмена по системной шине 400 МГц) и Pentium III (тактовая частота 1,0 ГГц, частота обмена по системной шине 133 МГц). Приведённые данные содержались в материалах, представленных компанией Intel на презентации процессора Pentium 4 в Москве, в ноябре 2000 года. В табл. 3 указаны программы, с помощью которых производилась сравнительная оценка производительности для различных приложений.

Таблица 3. Результаты сравнительных испытаний процессоров Pentium III и Pentium 4

Вид приложения Повышение производительности
Обработка целых чисел (SPECint2000) 23%
Обработка чисел с плавающей запятой (SPECfp2000) 79%
Кодирование аудиосигналов (eJay МРЗ Plus 1.3) 25%
Работа в сети Интернет (WebMark2001) 23%
Распознавание речи (Dragon Naturally Speaking, preffered 4.0) 27%
Кодирование видеопотоков
(Media Encjder 7.0)
(Video 2000 MPEG-2)

45%
26%
Обработка видеоматериалов
(ULead VideoStudio 4.0)
(Adobe Premier 5.1 c LSX-MPEG)

45%
26%
Трехмерные игры
(Quake III Arena Demo2)
44%
Трехмерная графика (3D WinBench 2000) 32%

Приведённые данные показывают, что наибольший выигрыш обеспечивается при использовании Pentium 4 для обработки видеоданных, реализации трёхмерной графики и выполнении операций над числами с “плавающей точкой”.

Литература

  1. Шагурин И.И. Pentium 4 - новая ступень развития микропроцессорной техники // Chip News. - 2000. - № 9. - С. 18–20 .
  2. Шагурин И.И., Бердышев Е.М. Процессоры семейства P6 - Pentium II, Pentium III, Celeron и другие. Архитектура, программирование, интерфейс. - М.: Горячая линия – Телеком. - 2000. - 248 с.

Введение

Перед началом сезона летних отпусков оба ведущих производителя процессоров, AMD и Intel, выпустили последние модели процессоров в своих современных линейках CPU, нацеленных на использование в высокопроизводительных PC. Сначала сделала последний шаг перед предстоящим качественным скачком AMD и примерно с месяц назад представила Athlon XP 3200+ , который, как предполагается, станет самым быстрым представителем семейства Athlon XP. Дальнейшие же планы AMD в этом секторе рынка связываются уже с процессором следующего поколения с x86-64 архитектурой, Athlon 64, который должен появится в сентябре этого года. Intel же выждал небольшую паузу и представил последний из Penlium 4 на 0.13-микронном ядре Northwood только сегодня. В итоге, заключительной моделью в этом семействе стал Pentium 4 с частотой 3.2 ГГц. Пауза перед выходом следующего процессора для настольных PC, основанного на новом ядре Prescott, продлится до четвертого квартала, когда Intel вновь поднимет планку быстродействия своих процессоров для настольных компьютеров благодаря росту тактовой частоты и усовершенствованной архитектуре.

Следует отметить, что за время противостояния архитектур Athlon и Pentium 4, показала себя более масштабируемой архитектура от Intel. За период существования Pentium 4, выпускаемых по различным технологическим процессам, их частота выросла уже более чем вдвое и без проблем достигла величины 3.2 ГГц при использовании обычного 0.13-микронного технологического процесса. AMD же, задержавшаяся со своими Athlon XP на отметке 2.2 ГГц, не может похвастать на настоящий момент столь же высокими частотами своих процессоров. И хотя на одинаковых частотах Athlon XP значительно превосходит по быстродействию Pentium 4, постоянно увеличивающийся разрыв в тактовых частотах сделал свое дело: Athlon XP 3200+ с частотой 2.2 ГГц назвать полноценным конкурентом Penium 4 3.2 ГГц можно лишь со значительными оговорками.

На графике ниже мы решили показать, как росли частоты процессоров семейств Pentium 4 и Athlon за последние три года:

Как видим, частота 2.2 ГГц является для AMD непреодолимым барьером, покорен который будет в лучшем случае только лишь во второй половине следующего года, когда AMD переведет свои производственные мощности на использование 90-нанометровой технологии. До этих же пор даже процессоры следующего поколения Athlon 64 будут продолжать иметь столь невысокие частоты. Смогут ли они при этом составить достойную конкуренцию Prescott – сказать трудно. Однако, похоже, AMD ждут тяжелые проблемы. Prescott, обладающий увеличенным кешем первого и второго уровня, усовершенствованной технологией Hyper-Threading и растущими частотами может стать гораздо более привлекательным предложением, нежели Athlon 64.

Что касается процессоров Pentium 4, то их масштабируемости можно только позавидовать. Частоты Pentium 4 плавно увеличиваются с самого момента выхода этих процессоров. Небольшая пауза, наблюдающаяся летом-осенью этого года, объясняется необходимостью внедрения нового технологического процесса, но она не должна повлиять на расстановку сил на процессорном рынке. Включив технологию Hyper-Threading и переведя свои процессоры на использование 800-мегагерцовой шины, Intel добился ощутимого превосходства старших моделей своих CPU над процессорами конкурента и теперь может ни о чем не беспокоиться, по крайней мере, до начала массового распространения Athlon 64.

Также на графике выше мы показали и ближайшие планы компаний AMD и Intel по выпуску новых CPU. Похоже, AMD в ближайшее время не должна питать никаких иллюзий по поводу своего положения на рынке. Борьба с Intel на равных для нее заканчивается, компания возвращается в привычную для себя роль догоняющего. Впрочем, долгосрочные прогнозы строить пока рано, посмотрим, что даст для AMD выход Athlon 64. Однако, судя по сдержанной реакции разработчиков программного обеспечения на технологию AMD64, никакой революции с выходом следующего поколения процессоров от AMD не произойдет.

Intel Pentium 4 3.2 ГГц

Новый процессор Pentium 4 3.2 ГГц, который Intel анонсировал сегодня, 23 июня, с технологической точки зрения ничего особенного собой не представляет. Это все тот же Northwood, работающий на частоте шины 800 МГц и поддерживающий технологию Hyper-Threading. То есть, по сути, процессор полностью идентичен (за исключением тактовой частоты) Pentium 4 3.0 , который был анонсирован Intel в апреле.

Процессор Pentium 4 3.2 ГГц, как и предшественники, использует ядро степпинга D1

Единственный факт, который следует отметить в связи с выходом очередного процессора Pentium 4 на ядре Northwood – это вновь возросшее тепловыделение. Теперь типичное тепловыделение Pentium 4 3.2 ГГц составляет порядка 85 Вт, а максимальное - ощутимо превышает величину 100 Вт. Именно поэтому использование грамотно спроектированных корпусов является одним из необходимых требований при эксплуатации систем на базе Pentium 4 3.2 ГГц. Одного вентилятора в корпусе теперь явно недостаточно, кроме того, необходимо следить и за тем, чтобы воздух в районе размещения процессора хорошо вентилировался. Intel также говорит и о том, что температура воздуха, окружающего процессорный радиатор, не должна превышать 42 градуса.

Ну и еще раз напомним, что представленный Pentium 4 3.2 ГГц – последний CPU от Intel для высокопроизводительных настольных систем, основанный на 0.13-микронной технологии. Следующий процессор для таких систем будет использовать уже новое ядро Prescott, изготавливаемое по 90-нанометровой технологии. Соответственно, тепловыделение будущих процессоров для настольных PC будет меньше. Следовательно, Pentium 4 3.2 ГГц так и останется рекордсменом по тепловыделению.

Официальная цена на Pentium 4 3.2 ГГц составляет $637, а это значит, что данный процессор является самым дорогим CPU для настольных компьютеров на сегодняшний день. Более того, Intel рекомендует использовать новинку с недешевыми материнскими платами на базе набора логики i875P. Однако, как мы знаем, данным требованием можно пренебречь: многие более дешевые системные платы на базе i865PE обеспечивают аналогичный уровень производительности благодаря активизации производителями технологии PAT и в наборе логики i865PE.

Как мы тестировали

Целью данного тестирования являлось выяснение того уровня производительности, который может обеспечить новый Pentium 4 3.2 ГГц по сравнению с предшественниками и старшими моделями конкурирующей линейки Athlon XP. Таким образом, в тестировании помимо Pentium 4 3.2 ГГц приняли участие Petnium 4 3.0 ГГц, Athlon XP 3200+ и Athlon XP 3000+. В качестве платформы для тестов Pentium 4 мы выбрали материнскую плату на чипсете i875P (Canterwood) с двухканальной DDR400 памятью, а тесты Athlon XP проводились при использовании материнской платы на базе наиболее производительного чипсета NVIDIA nForce 400 Ultra.

Состав тестовых систем приведен ниже:

Примечания:

  • Память во всех случаях эксплуатировалась в синхронном режиме с FSB в двухканальной конфигурации. Использовались наиболее агрессивные тайминги 2-2-2-5.
  • Тестирование выполнялось в операционной системе Windows XP SP1 с установленным пакетом DirectX 9.0a.

Производительность в офисных приложениях и приложениях для создания контента

В первую очередь по сложившейся традиции мы измерили скорость процессоров в офисных приложениях и приложениях, работающих с цифровых контентом. Для этого мы воспользовались тестовыми пакетами семейства Winstone.

В Business Winstone 2002, включающем в себя типовые офисные бизнес-приложения, на высоте оказываются процессоры семейства Athlon XP, производительность которых ощутимо превосходит скорость процессоров конкурирующего семейства. Данная ситуация достаточно привычна для этого теста и обуславливается как особенностями архитектуры Athlon XP, так и большим объемом кеш-памяти у ядра Barton, суммарная емкость которой благодаря эксклюзивности L2 достигает 640 Кбайт.

В комплексном тесте Multimedia Content Creation Winstone 2003, измеряющем скорость работы тестовых платформ в приложениях для работы с цифровым контентом, картина несколько иная. Процессоры Pentium 4, имеющие NetBurst архитектуру и обладающие высокоскоростной шиной с пропускной способностью 6.4 Гбайта в секунду оставляют старшие модели Athlon XP далеко позади.

Производительность при обработке потоковых данных

Большинство приложений, работающих с потоками данных, как известно, работает быстрее на процессорах Pentium 4. Здесь раскрываются все преимущества NetBurst архитектуры. Поэтому, результат, полученный нами в WinRAR 3.2, не должен никого удивлять. Старшие Pentium 4 значительно обгоняют по скорости сжатия информации топовые Athlon XP.

Аналогичная ситуация наблюдается и при кодировании звуковых файлов в формат mp3 кодеком LAME 3.93. Кстати, данный кодек поддерживает многопоточность, поэтому высокие результаты Pentium 4 здесь можно отнести и на счет поддержки этими CPU технологии Hyper-Threading. В итоге, Pentium 4 3.2 обгоняет старший Athlon XP с рейтингом 3200+ почти на 20%.

В данное тестирование мы включили результаты, полученные при измерении скорости кодирования AVI ролика в формат MPEG-2 одним из лучших кодеров, Canopus Procoder 1.5. Как это не удивительно, Athlon XP в данном случае показывает слегка более высокую производительность. Впрочем, отнести это, скорее всего, следует на счет высокопроизводительного блока операций с плавающей точкой, присутствующего в Athlon XP. SSE2 инструкции процессоров Pentium 4 в данном случае, как мы видим, не могут являться столь же сильной альтернативой. Правда, следует отметить, что разрыв в скорости старших моделей Athlon XP и Pentium 4 совсем небольшой.

Кодирование видео в формат MPEG-4 – еще один пример задачи, где процессоры Pentium 4 с технологией Hyper-Threading и 800-мегагерцовой шиной демонстрирует свои сильные стороны. Превосходство Pentium 4 3.2 над Athlon XP 3200+ в этом тесте составляет почти 20%.

Аналогичная ситуация наблюдается и при кодировании видео при помощи Windows Media Encoder 9: это приложение имеет оптимизацию под набор команд SSE2 и отлично приспособлено для NetBurst архитектуры. Поэтому, совершенно неудивительно, что вновь верхнюю часть диаграммы оккупировали процессоры от Intel.

Производительность в игровых приложениях

После выхода пропатченной версии 3Dmark03 результаты Pentium 4 относительно Athlon XP в этом тесте стали несколько выше. Однако расклад сил это не изменило: Pentium 4 лидировали в этом бенчмарке и ранее.

Pentium 4 подтверждает свое лидерство и в общем зачете в 3Dmark03. Правда, отрыв здесь небольшой: сказывается тот факт, что 3Dmark03 в первую очередь – это тест видеоподсистемы.

После перехода Pentium 4 на использование 800-мегагерцовой шины, Pentium 4 стали обгонять Athlon XP и в более старой версии 3Dmark2001. Причем, отрыв Pentium 4 3.2 ГГц от Athlon XP 3200+ уже достаточно существенен и составляет 6%.

В Quake3 Pentium 4 традиционно обгоняет Athlon XP, поэтому результат удивления не вызывает.

Аналогичная картина наблюдается и в игре Return to Castle Wolfenstein. Это совершенно логично, поскольку данная игра использует тот же движок Quake3.

Одно из немногих приложений, где старшей модели Athlon XP удается удержать лидерство, это – Unreal Tournament 2003. Хочется отметить, что все современные игры не имеют поддержки технологии Hyper-Threading, поэтому в играх потенциал новых Pentium 4 пока раскрывается не полностью.

А вот в Serious Sam 2 Athlon XP 3200+ больше лидером не является. С выходом нового процессора от Intel пальма первенства в этой игре переходит именно к Pentium 4 3.2 ГГц.

Новая игра Splinter Cell, хотя и основана на том же движке, что и Unreal Tournament 2003, быстрее работает на процессорах от Intel.

В целом, остается признать, что быстрейшим процессором для современных 3D игр на данный момент является Pentium 4 3.2 ГГц, обходящий Athlon XP 3200+ в большинстве игровых тестов. Ситуация меняется стремительно. Еще совсем недавно старшие Athlon XP в игровых тестах нисколько не уступали процессорам от Intel.

Производительность при 3D-рендеринге

Поскольку 3ds max 5.1, который мы использовали в данном тестировании, хорошо оптимизирован под многопоточность, Pentium 4, умеющий исполнять два потока одновременно благодаря технологии Hyper-Threading, с большим отрывом оказывается лидером. Даже старший Athlon XP 3200+ не может составить ему никакой конкуренции.

Абсолютно тоже самое можно сказать и про скорость рендеринга в Lightwave 7.5. Впрочем, в некоторых сценах, например при рендеринге Sunset, старшие модели Athlon XP смотрятся не так уж и плохо, однако такие случаи единичны.

Спорить с Pentium 4, выполняющем два потока одновременно, в задачах рендеринга для Athlon XP сложновато. К сожалению, AMD не имеет планов по внедрению технологий, подобных Hyper-Threading даже в будущих процессорах семейства Athlon 64.

Абсолютно аналогичная ситуация наблюдается и в POV-Ray 3.5.

Производительность при научных расчетах

Для тестирования скорости новых CPU от AMD при научных расчетах был использован пакет ScienceMark 2.0. Подробности об этом тесте можно получить на сайте http://www.sciencemark.org . Этот бенчмарк поддерживает многопоточность, а также все наборы SIMD-инструкций, включая MMX, 3DNow!, SSE и SSE2.

То, что в задачах математического моделирования или криптографии процессоры семейства Athlon XP показывают себя с наилучшей стороны, известно давно. Здесь мы видим еще одно подтверждение этого факта. Хотя, надо сказать, свое былое преимущество Athlon XP начинает терять. Например, в тесте Molecular Dinamics на первое место выходит уже новый Pentium 4 3.2 ГГц.

Кроме теста ScienceMark в этом разделе мы решили протестировать и скорость работы новых процессоров в клиенте российского проекта распределенных вычислений MD@home, посвященному расчету динамических свойств олигопептидов (фрагментов белков). Расчет свойств олигопептидов, возможно, сможет помочь изучению фундаментальных свойств белков, тем самым, внеся вклад в развитие науки.

Как видим, задачи молекулярной динамики новые Pentium 4 решают быстрее Athlon XP. Столь высокого результата Pentium 4 достигают благодаря своей технологии Hyper-Threading. Сам клиент MD@home, к сожалению, многопоточность не поддерживает, однако запуск двух клиентских программ в параллели на системах с процессорами с технологией Hyper-Threading позволяет ускорить процесс расчета более чем на 40%.

Выводы

Проведенное тестирование явно показывает, что на очередном этапе конкурентной борьбы Intel удалось одержать победу над AMD. Последний процессор на ядре Northwood обгоняет по своей производительности старшую и последнюю модель Athlon XP в большинстве тестов. За последнее время Intel смог значительно увеличить частоты своих CPU, увеличить частоту их шины, а также внедрить хитрую технологию Hyper-Threading, дающую дополнительный прирост скорости в ряде задач. AMD же, не имея возможности наращивать тактовые частоты своих процессоров ввиду технологических и архитектурных сложностей, не смогла адекватно усилить свои CPU. Не поправило положение даже появление нового ядра Barton: последние модели Pentium 4 оказываются явно сильнее старших Athlon XP. В результате, Pentium 4 3.2 ГГц вполне можно считать наиболее производительным CPU для настольных систем в настоящее время. Такая ситуация продлится по меньшей мере до сентября, когда AMD, наконец, должна будет анонсировать свои новые процессоры семейства Athlon 64.

Необходимо отметить и тот факт, что рейтинговая система, используемая в настоящее время AMD для маркировки своих процессоров, не может больше являться критерием, по которому Athlon XP можно сопоставлять с Pentium 4. Улучшения, которые произошли с Pentium 4, в числе которых следует отметить перевод этих CPU на 800-мегагерцовую шину и внедрение технологии Hyper-Threading, привели к тому, что Pentium 4 с частотой, равной рейтингу соответствующего Athlon XP, оказывается явно быстрее.

В общем, мы с интересом будем ожидать осени, когда и AMD и Intel представят свои новые разработки, Prescott и Athlon 64, которые, возможно, смогут обострить конкурентную борьбу между давними соперниками на процессорном рынке. Сейчас же AMD оказывается оттеснена Intel в сектор недорогих процессоров где, впрочем, эта компания чувствует себя превосходно: Celeron по сравнению с Athlon XP – откровенно слабый соперник.