Типы услуг транспортных сетей телекоммуникаций. Классификация транспортных сетей

Современная транспортная сеть должна обеспечивать экономически эффективную агрегацию любого клиентского трафика и его надежную, высококачественную передачу по каналам связи. Этого можно достичь с помощью различных транспортных технологий, многие из которых разработаны совсем недавно.

Транспортные решения следующего поколения

Широко распространенные TDM-технологии, базирующиеся в основном на принципах синхронной иерархии SDH (STM-N, VC-n и т.п.), в настоящее время вытесняются:

На электрическом уровне - технологиями Carrier Ethernet (интерфейсы E/FE, GE, 10GE, 40GE и 100GE) и MPLS-Transport Profile. Эти технологии обеспечат широкие возможности для создания транспортных сетей с пакетной коммутацией операторского класса, ориентированных на установление соединений;

На фотонном уровне - технологиями оптической транспортной иерархии OTH/OTN, похожими на SDH, но в отличие от нее обеспечивающими прозрачность передачи и кросс-коммутации совокупности TDM- и пакетного трафика в любом сочетании с дальнейшей их передачей по каналам систем с разделением каналов по длине волны оптического излучения (систем со спектральным уплотнением каналов) - WDM.

Сервисные сети IP/MPLS могут предоставлять услуги, соединяясь между собой, с системами опорной сети операторов фиксированной и мобильной связи, с точками присутствия провайдеров услуг, а также с системами широкополосного доступа непосредственно или поверх транспортной сети операторского класса. Пакетные коммутаторы с функциональностью Carrier Ethernet/T-MPLS & MPLS-TP становятся важным элементом транспортного уровня сети, взаимодействуя поверх существующих сетей NG SDH/MSPP и/или прозрачного и гибкого фотонного уровня OTN/WDM. Гибкий автоматизированный WDM-фотонный уровень снабжается программно перестраиваемыми и реконфигурируемыми оптическими узлами ввода/вывода T&ROADM. Эти и другие решения, включая использование интеллектуальных транспортных технологий ASON/GMPLS (Intelligent Optical Core), должны быть масштабируемыми по производительности и открытыми для модернизации.

Конвергенция транспортных решений и технологий Ethernet: эволюция к 40G и 100G

Процессы IP-трансформации стимулировали исследования по увеличению пропускной способности транспортных сетей как для традиционного (TDM), так и для пакетного трафика.

Для существующих систем синхронной транспортной иерархии SDH стандартизованы скорости передачи от STM-1 (155 Мбит/с) до STM-256 (40 Гбит/с), увеличивающиеся от уровня к уровню с коэффициентом 4. Для систем оптической транспортной иерархии стандартизованы скорости передачи от OTU-1 (2,5/2,7 Гбит/с) до OTU-3 (40/43 Гбит/с), которые также увеличиваются от уровня к уровню с коэффициентом 4. Скорость передачи Ethernet (интерфейсы) росла с коэффициентом 10 и достигла на сегодняшний день 100 Гбит/с. Конвергенция этих технологий началась со скоростей передачи 10G. Исследования последних лет показали, что эта конвергенция развивается в направлении скоростей передачи 40G и 100G. Проходящая в настоящее время стандартизация поддерживает такую конвергенцию и закладывает перспективу для создания сетей следующих поколений.

Предложенные первоначально для центров сбора и обработки данных, а также для корпоративных компьютерных сетей системы 40GE, по всей вероятности, будут широко использоваться и на уровне транспортных сетей с внедрением непривычного для Ethernet-технологии коэффициента 4 (40GE по отношению к 10GE). На магистральном уровне сетей будет реализована скорость передачи 100GE/OTN с непривычным для транспортных сетей коэффициентом 2,5 по отношению к внедряемому сегодня уровню 40GE/OTN.

Удовлетворение поставленных сервис-провайдерами требований невозможно без освоения скоростей передачи данных в диапазоне до 100 Гбит/с и выше.

Для новых протоколов и интерфейсов 40G и 100G в настоящее время разрабатываются стандарты. Еще в июле 2006 г. рабочая группа IEEE 802.3 WG создала специальную группу High Speed Study Group (HSSG), утвердившую год спустя две MAC (Media Access Control) скорости передачи:

40GE для приложений, связанных с взаимодействием серверов (server-to-server), а также серверов и пакетных коммутаторов (server-to-switch);

100GE для приложений, связанных с взаимодействием пакетных коммутаторов (switch-to-switch), включая соединения «точка-точка» между сетевыми кластерами и т.п.

Главные усилия направлены на выбор новых технологий и решений, включая новые методы линейного кодирования, которые позволят наиболее эффективно передавать высокоскоростные цифровые потоки 40 Гбит/с и 100 Гбит/с по каналам систем WDM, работающих сегодня в основном на скоростях не выше 10 Гбит/с (из расчета на каждый оптический канал).

Для увеличения дальности передачи потоков 40 Гбит/с и 100 Гбит/с по каналам систем WDM будут использованы многоуровневые линейные коды (QAM и т.п.), улучшенные коды с исправлением ошибок (SFEC), а также методы когерентного приема вместо дифференциального детектирования сигналов. За новыми методами будущее, но на начальных этапах 100-гигабитные системы будут внедряться с определенными ограничениями по дальности передачи на WDM-системах, уже работающих на уровне 10 Гбит/с.

Транспортные решения OTN/OTH

Оптическая транспортная иерархия (Optical Transport Hierarchy, OTH), как определено в рекомендации МСЭ G.798 & G.709, предусматривает методы размещения, мультиплексирования и управления сетями, поддерживающими различные клиентские сигналы в их натуральном формате, независимо от типов используемых протоколов. В стандарте описана единая структура Optical Data Unit (ODU)/Digital wrapper, в которой можно разместить несколько существующих фреймов потоков данных, а затем объединить их с другими сигналами и далее передавать и управлять в едином стиле с единой функциональностью, аналогичной той, что принята в системах SDH.

Первая версия OTH была ориентирована преимущественно на клиентские сигналы SDH. Поэтому изначально в рекомендации G.709 были определены только 3 фиксированных типа ODU-контейнеров:

ODU 1 for CBR 2G 5 (STM -16);

ODU 2 for CBR 10G (STM -64);

ODU3 for CBR40G (STM-256).

В настоящее время структуры OTH рассматриваются с учетом передачи таких клиентских сигналов, как

Ethernet 1GE , 10GE WAN /LAN , 40GE , 100GE ;

OTH 2,5G , 10G , 40G , 100G ;

SDH 2,5G , 10G , 40G ;

FC 1G, 2G, 4G, 8G (10G).

Технология OTN является идеальным средством для создания конвергентных транспортных платформ, обеспечивающих прозрачность при передаче трафика, относящегося к любым услугам поверх оптических каналов WDM-систем, поскольку имеет собственный отдельный заголовок, похожий на заголовок в SDH и дающий возможность контролировать сеть и управлять ею. Поэтому поддерживается прозрачная совместная передача совокупности асинхронного (пакетного) и синхронного (TDM) трафика в любых сочетаниях.

Кроме того, системы OTN:

Очень эффективны при поддержке асинхронных пакетно ориентированных услуг, таких как GE, 10GE, различного уровня Fiber Channel (FC), ESCON & FICON, не имеющих собственных средств мониторинга на физическом уровне;

Позволяют обнаружить и локализовать отказы в WDM-сети, значительно повышая качество предоставляемых услуг;

Являются единственной технологией, которая может передавать широко распространенные в IP/Ethernet клиентские сигналы 10GE LAN PHY;

Обеспечивают совместную передачу синхронных и асинхронных сигналов поверх одного оптического lambda-канала системы WDM.

Следует, однако, отметить, что стандартизация OTN не закончена, в частности алгоритм размещения GE, FC и Video еще не до конца разработан, прозрачное размещение 10GE оговорено параллельно в нескольких различающихся стандартах, для группирования и коммутации сигналов со скоростями передачи ниже 2,5 Гбит/с на практике все еще используются системы SDH. Однако стандартизация продолжается, включая уровень ODU4/100GE и уровень ODUflex для сигналов со скоростями ниже, чем ODU-1 (sub-lambda-каналы).

Технология OTN имеет все шансы стать в перспективе универсальным прозрачным электрическим уровнем оптических магистральных сетей связи, расширяя хорошо отработанные в TDM/SDH методы OAM на пакетные интерфейсы типа Ethernet (включая 10GE LAN PHY), FC, ESCON, Digital Video и т.п.

Роль ROADM на фотонном уровне транспортной сети

Реконфигурируемые оптические мультиплексоры ввода/вывода ROADM упрощают процесс планирования и обслуживания сетей DWDM, обеспечивая автоматизацию (с минимальным участием обслуживающего персонала) процессов добавления, удаления или перенаправления оптических каналов. В существующих сетях эти процессы пока осуществляются вручную с затратой значительных усилий на адаптацию оборудования и переключение трафика и требуют высокой квалификации персонала. Основой ROADM стали оптические устройства нового класса, а именно селективные переключатели длин волн Wavelength Selective Switch (WSS) с одним входом (групповой сигнал) и многими выходами для групп и/или индивидуальных каналов или со многими входами для групп и/или индивидуальных каналов и одним выходом.

Следует отметить, что если в узле производится ввод, вывод или перемаршрутизация/коммутация канала на другое направление передачи, то все соединения между узлами сети, включая транзитные соединения через узел на фотонному уровне, должны выдерживать тонкий баланс между параметрами индивидуальных оптических каналов (длин волн) для достижения оптимальных параметров в системе передачи в целом. Поэтому в ROADM имеется функция динамической балансировки уровней оптической мощности различных оптических каналов.

Как только в системах WDM стали доступны транспондеры с возможностью перестройки длины волны излучения во всем C-диапазоне в соответствии с сеткой частот с шагом 100 ГГц и 50 ГГц (до 80-96 длин волн оптического излучения в C-band), в ROADM обнаружился новый ограничивающий фактор. Оптические каналы выводились на фиксированные порты ROADM, соответствующие конкретному значению длины волны оптического излучения. Поэтому, несмотря на гибкость транспондеров, избежать ручных операций для переключения канала на новые направления не удавалось.

В результате проведенных исследований для предотвращения блокирования оптического канала было предложено устройство colorless ROADM, в котором любой пользовательский порт может быть использован для организации канала с любой длиной волны оптического излучения. На следующем этапе были применены directionless ROADM, в которых к любому порту любого направления передачи может быть адресован оптический сигнал на любой длине волны. Ввод/вывод соответствующего канала по любому направлению осуществляется автоматически, без нарушения баланса в оставшихся оптических каналах, передаваемых через узел насквозь. Такая концепция в сетевых решениях Alcatel-Lucent получила название Zero Touch Photonic (ZTP) - сеть, перестраиваемая посредством системы управления, т.е. без «ручного» вмешательства персонала на узлах (рис. 1).

Наличие в узлах WDM-сети colorless & directionless T&ROADM-систем является обязательным условием реализации функциональности ASON/GMPLS на фотонном уровне сети.

Интеллектуальные транспортные решения ASON/GMPLS

Сети следующего поколения должны быть более динамичными, обеспечивать эффективное использование ресурсов и высокий уровень надежности и качества предоставления услуг по запросу. Иными словами, нужно обеспечить динамическое предоставление ресурсов сети (необходимой полосы) для доставки любых услуг в любое время любому пользователю. Именно поэтому IETF расширил сигнализационные и маршрутизирующие протоколы MPLS за пределы IP-сети, и на этой основе был разработан обобщенный протокол General MultiProtocol Label Switching (GMPLS).

Функциональность GMPLS с распределенным уровнем системы управления (Control Plane), отделенным от уровня передачи данных (Data Plaine), стала следующим этапом эволюции технологий MPLS для использования их в транспортных сетях. МСЭ-Т (ITU-T) более глубоко рассмотрел сетевые аспекты применения этой функциональности в ряде рекомендаций для Automatically Switched Optical Network (ASON). OIF завершил стандартизацию сетевых интерфейсов. Пользовательские интерфейсы UNI служат для доступа к сети ASON для запроса на предоставление услуг, контроля соединений, обеспечения QoS в соответствии со SLA, сбора сообщений об отказах и т.п. Сетевые интерфейсы NNI предназначены для связи между сетевыми элементами, сетевыми доменами и разными сетями. На этом уровне в рамках Control Plane ведутся обработка запросов на соединения, их организация и контроль, обмен в определенных объемах информацией о доступных ресурсах в сетевых элементах и соединениях, маршрутизация сервисов между сетевыми доменами и т.п.

Одно из основных достоинств интеллектуальной транспортной сети с функциональностью ASON - способность по требованию пользователей или запросу от системы централизованного управления сетью автоматически устанавливать:

Соединения внутри сети, построенной на оборудовании одного поставщика;

Сквозные соединения на сети, построенной не только на оборудовании разных поставщиков, но и с использованием разных функциональных и технологических уровней, ориентированных на установление соединений, например SONET/SDH (VC-N), WDM/OTN (OCH, ODU), T-MPLS/MPLS-TP (LSP, PW3) и т.п.

Для реализации ASON/GMPLS на фотонном уровне в узлах WDM-сети размещаются системы T&ROADM, обеспечивающие переключение оптических каналов без дополнительного O-E-O-преобразования. Если системы T&ROADM имеют коэффициент связности N до 6-10 (количество направлений, на которые можно переключить оптический канал из одного узла сети на фотонном уровне), то в этом случае отпадает необходимость сохранять свободной до 50% емкости сети для реализации защитных механизмов с полным дублированием каналов типа O-SNCP, OCP и т.п. Достаточно иметь 10-25% распределенной свободной емкости на соединениях в сети, чтобы обеспечить возможность обхода пораженных участков на основе ASON/GMPLS.

В этих же узлах могут размещаться системы автоматического переключения трактов, работающие в соответствии со стандартом OTH/OTN на электрическом уровне и обеспечивающие прозрачное переключение данных на уровне ODU и/или sub-lambda-каналов (ODUflex), включая GE, 10/100 Ethernet, Fiber Channel, FICON/ESCON, SONET/SDH и т.п. Технология ASON/GMPLS может быть реализована и на OTH/OTN-уровне сети (рис. 2).

Функциональность ASON/GMPLS на уровне SDH уже внедрена на многих сетях. Аналогичная функциональность на фотонном уровне, обеспечивающая при отказах сети автоматическое восстановление (без вмешательства в этот процесс оператора системы управления) оптических lambda-каналов, реализована в оборудовании 1626LM и начнет внедряться на сетях операторов в 2010 г. икс

Рубрика: .

Транспортная телекоммуникационная сеть - это основная часть инфраструктуры сети любого оператора, будь то оператор традиционной телефонии, сотовый оператор, провайдер проводного или беспроводного доступа в Интернет.

Современные транспортные телекоммуникационные сети должны быть универсальны, т.е. способны эффективно поддерживать как эксплуатируемые сегодня системы 2G и 2,5G, ориентированные на передачу трафика в режиме TDM, так и сети следующего поколения - 3G и даже 4G . От качества транспортной телекоммуникационной сети полностью зависит качество предоставляемых услуг. Именно поэтому при выборе технологии и образования для построения этого участка инфраструктуры, операторы особо тщательны, внимательны и придирчивы. Например, если системы UMTS Release 99 ориентированы на транспорт, основанный на технологии АТМ, то последующие разработки UMTS Revision 5/6 - на IP-решения с использованием сетей Ethernet и технологии MPLS. Поэтому оборудование транспортных телекоммуникационных сетей должно обеспечивать эффективную передачу всех типов трафика - TDM, ATM, IP.

Основными способами организации транспортных телекоммуникационных сетей являются волоконно-оптические, спутниковые и беспроводные системы связи. К последним относятся радиорелейные системы, которые широко используются в транспортных телекоммуникационных сетях операторов сотовой связи и широкополосного доступа.

Транспортная телекоммуникационная сеть оператора мобильной связи состоит из двух основных сегментов (рис.1):

Распределительной сети (backhaul), связывающей базовые станции с контроллерами и центрами коммутации подвижной связи (Mobile Switching Center (MSC));
магистральной сети (backbone), обеспечивающей высокоскоростной транспорт между центрами коммутации подвижной связи.

Традиционно распределительная сеть строилась по топологии «звезда»: в центре - MSC, к нему выделенным каналом (как правило, E1 или NE1) подключались системы радиодоступа (контроллер и базовые станции). Если базовые станции находятся в труднодоступных районах, то для их подключения часто используют радиорелейные линии связи или спутниковые каналы.

Операторы сотовой связи далеко не всегда имеют собственные каналы между базовыми станциями, контроллерами и MSC, чаще арендуют их. Поэтому понятно их стремление максимально загружать арендуемые емкости. Однако при этом необходимо учитывать и возможные пиковые нагрузки. Возникает задача поиска компромисса между стоимостью аренды каналов и качеством обслуживания абонентов в периоды пиковых нагрузок. Ее трудно решить при использовании традиционных технологий с коммутацией каналов (TDM) .

Одни технологии мобильной связи изначально обеспечивают эффективное использование канальных ресурсов, другие - нет. Например, при передаче обычного трафика GSM дополнительные процедуры сжатия могут принести выгоду, а вот трафик систем CDMA на интерфейсах E1 Frame Relay между контроллерами базовых станций и центром MSC уже достаточно плотно «упакован».

Строящиеся транспортные сети должны быть универсальными, т. с. способными эффективно поддерживать как эксплуатируемые сегодня системы 2G и 2.5G, ориентированные на передачу трафика в режиме TDM, так и сети следующего поколения.

Оптимальная транспортная телекоммуникационная сеть операторов мобильной связи должна соответствовать ряду критериев:
обеспечению безболезненного внедрения новых систем мобильной связи;
соответствию требованиям архитектур сетей следующего поколении, в частности, IMS;
сохранению вложенных инвестиций;
наличию эффективных средств управления трафиком;
гарантии того, что качество услуг связи не будет снижаться, лучше - повышаться;
предоставлению удобных средств технического обслуживания и эксплуатации.

Один из способов построения эффективной распределительной сети - установить в узлах радиосети (базовые станции и контроллеры) и в центре MSC мультисервисные граничные устройства, упаковывающие трафик в пакеты, оптимизирующие его для дальнейшей передачи по сети. Такой подход позволит на базе единой конвергентной транспортной сети поддерживать различное оборудование радиосегментов: GSM (TDM), GPRS (TDM), CDMA 1 x EV-DO, UMTS (ATM) и пр. Вместо множества частично заполненных потоков Е1 оператор получит относительно небольшое число каналов, «плотно» заполненных пакетами, при этим механизмы QoS гарантируют высокое качество голосовой связи. Более того, за счет эффективного использования канальных ресурсов операторы смогут подключать новые базовые станции по имеющимся каналам связи.

Если в непосредственной близости с узлами, где находятся базовые станции, контроллеры и центры MSC, имеются ВОЛС, то потоки Е1 можно мультиплексировать для передачи по сети SDH. Преимущества таких сетей связаны в первую очередь с высокой надежностью, обеспечиваемой кольцевыми схемами защиты и развитыми средствами поддержки эксплуатации. Наибольшая экономия обеспечивается, когда оборудование сетей мобильной связи подключается к уже существующей сети SDH, по которой могут передаваться самые разные типы нагрузки: трафик мобильной телефонии, сетей фиксированной связи, видеоинформация, ТВ-каналы и пр.

Транспортная сеть мобильной связи обеспечивает соединения между базовой станцией мобильной связи (RBS) и сотовым коммутатором по границе транспортной сети. Крупные операторы мобильной связи делят архитектуру транспортного канала на две составляющие (рис. 2) - низовую сеть радиодоступа (LRAN) и сеть радиодоступа высокого уровня (HRAN).

При установке радиооборудования с интерфейсами Ethernet оно также может быть подключено к сети SDH. Для этого существуют специальные технические решения Ethernet over SDH, реализованные, в частности, в SDH - оборудовании Metropolis компании Lucent-Alcatel. Для повышения эффективности передачи трафика Ethernet через сети SDH в настоящее время разработан и стандартизован целый ряд технологий: универсальная схема фрейминга (General Framing Concatenation, G.707), алгоритмы подстройки емкости линии связи (Link Capactivy Adjustment Scheme, G.7024). Оборудование с поддержкой упомянутых технологий оптимизировано для построения мультисервисных сетей и его относят к системам SDH следующего поколения (NG-SDH).

УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

«ТРАНСПОРТНЫЕ СЕТИ»

Для студентов специальности 210709

«Многоканальные телекоммуникационные системы»

Разработано преподавателем ХИИК Некрасовой ЕМ

Хабаровск 2014


1 Классификация транспортных сетей (ТС). Обзор технологий для ТС
2 IP-телефония
2.1 Виды соединений в сети IP-телефонии
2.2 Шлюзы IP-телефонии
2.3 Протоколы IP-телефонии
2.4 Кодеки IP-телефонии
3 Качество обслуживания в мультисервисных IP-сетях
3.1 Технологии обеспечения качества пропуска мультимедийного трафика
3.2 Очереди и алгоритмы их обслуживания - основа QoS
4 Технология MPLS
Технологии MPLS Traffic Engineering (TE) и Fast Re Route (FRR)
5 Безопасные информационные систем 5.1 Симметричное и асимметричное шифрование
5.2 Механизм электронной цифровой подписи
6 Виртуальные частные сети (VPN) 31
6.1 Понятие "туннеля" при передаче данных в сетях
6.2 Архитектура VPN-сетей
6.3 Протоколы для организации VPN
6.4 MPLS VPN
7 NGN (Next Generation Network - сеть следующего поколения)
8 Архитектура современной сельской мультисервисной сети связи
9 Технология Metro Ethernet
10 Пассивные оптические сети (PON) – переворот в широкополосном доступе
11 Гибкие мультиплексоры. Мультиплексор ENE-04

Список литературы

1 Олифер В.Г. Олифер Н.А. Основы компьютерных сетей, учебник, – Спб.: Питер, 2009 г.

2 А.В. Росляков, М.Ю. Самсонов, И.В. Шибаева. IP-Телефония – М.: Эко-трендз, 2003г.

3 С.В. Запечников, Н.Г. Миославская, А.И. Толстой основы построения виртуальных частных сетей, учебное пособие. – Горячая линия – Телеком, 2003 г.

4 Филимонов А.Ю. Построение мультисервисных сетей Ethernet – СПб.: БХВ - Петербург, 2007г

5 Бакланов И.Г. «NGN: принципы построения и организации», - М.:ЭКО-ТРЕНДЗ, 2008 г

6 Б.С. Гольдштейн А.Б. Гольдштейн. «SOFTSWITCH» «БХВ – Санкт-Петербург» 2006г

7 Олифер В.Г. Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы.

4-е издание – Спб.: Питер, 2010 г, 944 стр.

7 Гольдштейн B.C., Пинчук А.В., СуховицкийА.Л. IP-Телефония. - М.: Радио и связь, 2001с


Классификация транспортных сетей. Обзор технологий для транспортной сети (ТС)

«Ум заключается не только в знании,

но и в умении прилагать знание на деле»

Аристотель.

Сначала было слово. Слово содержало некую информацию, предназначенную для передачи от человека к человеку. И уж потом постепенно у людей сформировалось осознание того, что для нормального информационного обмена необходимы коммуникации - от голубиной почты и верблюжьих караванов до телефонов, компьютеров и волоконно-оптических магистралей. То, что произошло в мире телекоммуникаций сегодня, можно квалифицировать, скорее, как революцию, чем как эволюцию, настолько велико различие между тем, что представлял собою телефон вчера, и тем, как возросло распространение информации и влияние сети Интернет сегодня. Существующая сегодня телефонная сеть общего пользования (ТфОП) и, вместе с ней, сама технология коммутации каналов на стадии вымирания. Её место занимает сеть с коммутацией пакетов, которая будет обслуживать передачу речи, видеоинформации и данных. Процесс информатизации набирает обороты во всем мире. В современном глобальном мире уровень информатизации обеспечивает конкурентоспособность и безопасность страны.

Еще 10 лет назад любая технология связи могла бы просуществовать 20-30 лет. Теперь многие технологии «умирают» за 1-2 года, потому что оборудование связи очень сильно подвергается моральному износу (т.е. оборудование еще может функционировать, но оно уже не будет отвечать современным тенденциям и требованиям). А новое оборудование, устанавливаемое на станциях, нуждается в квалифицированных работниках, поэтому специалистам, работающим с новыми технологиями, требуется непрерывно повышать свои знания и улучшать навыки.

Грядущий переход Интернета на более эффективный протокол IPv6 поможет реализовать более сложные алгоритмы обслуживания абонентов и даже построить "интернет вещей", когда выход в сеть будут иметь и зубные щетки, и холодильники, и автомобили, а множество датчиков и сенсоров будут объединяться в самоорганизующиеся сети. А количество "пользователей" по линии "machine-tomachine" (или М2М) будет насчитывать десятки миллиардов устройств.

Связистам надо двигаться от потребителя и стараться сгенерировать действительно очень важные для него услуги, пусть даже и с его участием. И будет всем нам счастье. Ведь счастье подобно бабочке - чем усерднее ловишь его, тем успешнее оно ускользает. Но если вы перенесете свое внимание на другие вещи, оно придет и тихонько сядет вам на плечо.

Это было лирическое отступление. А теперь посмотрим на обложку данного учебного пособия, где приведён рисунок, иллюстрирующий понятия: «транспортной сети» и «сети доступа».

Транспортная сеть – это совокупность сетевых элементов, которые обеспечивают передачу трафика. Транспортной является та часть сети связи, которая вы­полняет функции переноса (транспортировки) потоков сообщений от их источниковиз одной сети доступа к полу­чателям сообщений другой сети доступа .

Сеть доступа – это совокупность сетевых элементов, обеспечивающих доступ абонентов к ресурсам транспортной сети с целью получения услуг. Сеть доступа связывает источник (приемник) сообщений с узлом досту­па, являющимся граничным между сетью доступа и транс­портной сетью.

Из рисунка на обложке пособия видно, что основными технологиями современной транспортной сети являются: WDM, NGSDH (SDH нового поколения), MPLS и, конечно, 10GE.

В современной сети доступа в настоящее время применяется громадное количество различных технологий, например: различные виды DSL (ADSL, HDSL, VDSL); различные виды оптического доступа (FTTH – оптика в квартиру, FTTB – оптика в здание, FTTC – оптика в уличный шкаф); различные виды радиодоступа (Wi-Fi, WiMAX, LTE), MetroEthernet, GPON и т. д.

По типу присоединяемых абонентских терминалов сети ВСС разделяются на:

сети фиксированной связи , обеспечивающие присоеди­нение стационарных абонентских терминалов;

сети подвижной связи , обеспечивающие присоедине­ние подвижных (перевозимых или переносимых) абонент­ских терминалов.

Кроме того, по способу организации каналов сети традиционно разделяются на первичные и вторич­ные (рисунок 1.1).

Первичная сеть представляет собой совокупность кана­лов и трактов передачи, образованных оборудованием узлов и линий передачи (или физических цепей), соединяю­щих эти узлы. Первичная сеть предоставляет каналы пере­дачи (физические цепи) для вторичных сетей для образования каналов связи.

Вторичная сеть представляет собой совокупность ка­налов связи, образуемых на базе первичной сети путем их маршрутизации и коммутации в узлах коммутации и орга­низации связи между абонентскими устройствами пользо­вателей.

Рисунок 1.1 – Структура системы электросвязи

В основе построения классической системы электросвязи лежит первичная сеть, включающая в себя среду распространения сигналов и аппаратуру передачи сигнала, обеспечивающую создание типовых каналов и трактов первичной сети. Первичная сеть может быть построена на основе аналоговых систем передачи (АСП) или на основе цифровых систем передачи (PDH, SDH).

Типовые каналы и тракты первичной сети используются различными вторичными сетями: сетями телефонии, передачи данных, радиосвязи, телевидения, сетями сотой связи.

Очень важно понимать классификацию сетей связи по территориальному делению :

магистральная – это сеть, связывающая между со­бой узлы центров субъектов Российской Федерации. Магистральная сеть обес­печивает транзит потоков сообщений между зоновыми се­тями;

зоновые (или региональные) – это сети связи, образу­емые в пределах территории одного или нескольких субъ­ектов Российской Федерации (регионов);

местные – это сети связи, образуемые в пределах ад­мини­стра­тивной или определенной по иному принципу тер­ритории и не относящиеся к региональным сетям связи. Местные сети подразделяются на городские и сельские;

международная – это сеть общего пользования, присоединенная к сетям связи иностранных государств.

IP-телефония

Аббревиатура VoIP (Voice Over Internet Protocol) означает передачу голоса через интернет-протокол. Истоки технологии VoIP находятся в далеком 1876 году, когда американец Александр Белл осуществил первый телефонный звонок и запатентовал изобретенный им «говорящий телеграф» Это устройство не имело звонка, а вызов абонента производился через трубку при помощи свистка. Появление VoIP датируется 1995 годом, когда маленькая израильская компания VocalTec выпустила первую программу для интернет-телефонии. Программа называлась Internet Phone и была предназначена для звонков с домашнего компьютера.

В сетях на основе протокола IP все данные - голос, текст, видео передаются в виде пакетов. Любой компьютер и терминал такой сети имеет свой уникальный IP-адрес, и передаваемые пакеты маршрутизируются к получателю в соответствии с этим адресом, указываемом в заголовке. Данные могут передаваться одновременно между многими пользователями по одной и той же линии . При возникновении проблем IP-сети могут изменять маршрут для обхода неисправных участков. При этом протокол IP не требует выделенного канала для сигнализации.

Рисунок 2.1 – Соединение в сети с коммутацией пакетов

Аналоговый сигнал от абонента поступает в шлюз IP-телефонии .

В шлюзе происходит следующее : на первом этапе осуществляется оцифровка голоса. Затем оцифрованные данные анализируются и обрабатываются с целью уменьшения физического объема данных, передаваемых получателю. Как правило, на этом этапе происходит подавление ненужных пауз и фонового шума, а также компрессирование. На следующем этапе полученная последовательность данных разбивается на пакеты и к ней добавляется протокольная информация - адрес получателя, порядковый номер пакета на случай, если они будут доставлены не последовательно, и дополнительные данные для коррекции ошибок. При этом происходит временное накопление необходимого количества данных для образования пакета до его непосредственной отправки в сеть.

Извлечение переданной голосовой информации из полученных пакетов происходит в приёмном шлюзе также в несколько этапов. Сначала проверяется их порядковая последовательность. Поскольку IP-сети не гарантируют время доставки, то пакеты со старшими порядковыми номерами могут прийти раньше, более того, интервал времени получения также может колебаться.

Для восстановления исходной последовательности и синхронизации происходит временное накопление пакетов. Однако некоторые пакеты могут быть вообще потеряны при доставке, либо задержка их доставки превышает допустимый разброс. В обычных условиях приемный терминал запрашивает повторную передачу ошибочных или потерянных данных. Но передача голоса слишком критична ко времени доставки, поэтому в этом случае либо включается алгоритм аппроксимации, позволяющий на основе полученных пакетов приблизительно восстановить потерянные, либо эти потери просто игнорируются, а пропуски заполняются данными случайным образом.

Полученная таким образом последовательность данных декомпрессируется и преобразуется непосредственно в аудио-сигнал, несущий голосовую информацию получателю.

Таким образом, с большой степенью вероятности, полученная информация не соответствует исходной (искажена) и задержана (обработка на передающей и приемной сторонах требует промежуточного накопления). Однако в некоторых пределах избыточность голосовой информации позволяет мириться с такими потерями.

В настоящей время в IP-телефонии существует два основных способа передачи голосовых пакетов по IP-сети:

1) через глобальную сеть Интернет (Интернет-телефония);

Сможет ли оператор запустить новые услуги в действующей транспортной сети, справится ли она с передачей высокоскоростного трафика мультимедийных данных?

Проблемы, волнующие операторов

С переходом к технологии UMTS полоса пропускания прямого и обратного каналов передачи трафика значительно увеличивается.

Очевидны и изменения структуры передаваемого трафика. До сих пор в мобильных сетях превалирует голосовой трафик, но при переходе к 3G роль услуг передачи данных возрастет, и существенно увеличится их вклад в общий объем трафика. В определенный момент IP-трафик станет преобладающим, особенно с учетом всеобщей миграции голоса от канальной к пакетной коммутации.

Мгновенные отказ от традиционных технологий и переход к IP невозможны, а потому транспортная среда оператора мобильной связи должна обеспечивать постепенную миграцию. Возможность передачи трафика по традиционным протоколам (TDM, ATM и FR) через IP-сеть с помощью технологии PWE3 (Pseudo Wire Emulation End-to-End) делает IP-среду универсальной с точки зрения поддержки услуг второго и третьего поколений.

В общем случае в транспортной сети мобильного оператора можно выделить два основных сегмента: магистральная транспортная сеть и сеть радиодоступа (RAN). Принципы построения магистральной сети мобильного оператора имеют свои особенности, но в целом совпадают с принципами построения других магистральных сетей.

Ситуация с развитием транспортных сетей RAN - иная. В сетях второго поколения для подключения базовых станций и контроллеров операторы используют мобильные низкоскоростные TDM-каналы. Изначально они были вынуждены арендовать большинство каналов у операторов фиксированной и дальней связи, но сейчас ситуация улучшается. Многие сотовые компании имеют собственную оптическую инфраструктуру SDH/PDH, радиорелейное оборудование и сокращают количество арендуемых каналов. Как следствие, уменьшаются операционные расходы на содержание сети. При этом мало кто из операторов думает о технологии IP как о возможном пути решения проблем, связанных с расширением транспортной сети RAN, но именно построение IP-RAN позволяет решить многие проблемы модернизации уровня доступа.

Как уже отмечалось, новые услуги требуют расширения полосы пропускания. Если ранее емкости выделенного канала 2 Мбит/c (E1) было достаточно для передачи трафика от базовой станции к контроллеру, то БС 3G требуют уже четырех каналов E1. В ближайшем будущем базовым станциям понадобится полоса пропускания 14,4 Мбит/c, и это - не предел. Для подключения одной БС потребуется целый «пучок» каналов E1, что неудобно и имеет ряд ограничений.

Использование IP в качестве транспортной среды позволяет без труда получить полосу пропускания 100 или 1 тыс. Мбит/с, что многократно превышает емкость каналов E1.

Типовые сценарии построения IP-RAN

В зависимости от типов используемого оборудования и характеристик транспортных сетей варианты построения IP-RAN различаются. Мы последовательно рассмотрим разные сценарии.

Первый сценарий типичен для всех операторов второго поколения, планирующих переход к 3G: это передача трафика БС 2G по каналам Ethernet. Традиционно базовые станции мобильного оператора второго поколения подключаются к контроллерам через каналы TDM, по которым передаются как голосовые пакеты, так и сигнальный трафик, а также не менее важный синхросигнал для согласования работы всех БС и контроллеров. Преимущество TDM перед Ethernet в сетях мобильной связи состояло в том, что последние не могли синхронизировать работу оборудования. Однако с развитием IP-технологий проблема была решена. Сейчас доступны несколько технологий, позволяющих решить проблему передачи синхросигнала через IP-сеть, например технологии адаптивного восстановления синхросигнала, синхронный Ethernet и др. Следовательно, рассматриваемый сценарий создания сети IP-RAN можно полностью реализовать на базе Ethernet.

Второй сценарий тоже характерен для сетей второго поколения, где большую часть трафика составляет голосовая информация. При разговоре двух человек один из них, как правило, говорит, а второй слушает, поэтому при использовании TDM-технологий каналы минимум наполовину загружаются неинформативным трафиком, то есть тишиной. Все неинформативные пакеты могут быть выявлены на устройствах доступа в IP-сеть и отброшены за ненадобностью. Перед отправкой в сеть информативные пакеты можно оптимизировать на устройстве доступа по принципу, схожему с архивацией файлов. Все это позволяет существенно сократить объемы трафика, передаваемого от базовой станции, и потребность в полосе пропускания, уменьшить объемы передаваемой информации и операционные расходы на содержание транспортной сети.

Третий сценарий характерен при наличии базовых станций с поддержкой технологии ATM. В этом случае устройства доступа должны поддерживать стандарт ATM IMA для подключения базовых станций и технологию PWE3 для организации виртуальных ATM-каналов через IP-сеть. По способам организации виртуальных каналов и передаче синхросигнала третий сценарий аналогичен первому.

Четвертый сценарий типичен для европейских мобильных операторов, которые раньше опирались на хорошо развитые транспортные сети ATM и не могли одномоментно отказаться от их дальнейшего использования. В европейских сетях 3G наблюдается разделение трафика по разным средам передачи. Так, голосовой трафик и синхросигнал по традиции передаются через ATM-сеть, гарантирующую высокое качество обслуживания. А дополнительный трафик услуг, не критичных к качеству обслуживания, пересылается по новой транспортной IP-инфраструктуре. Это вовсе не означает, что европейские компании не доверяют IP-технологиям передачу ключевого трафика, а лишь свидетельствует о том, что они пытаются максимально разгрузить сеть при минимуме дополнительных вложений. В качестве IP-каналов доступа могут использоваться каналы Ethernet, а также медные DSL-линии, что позволяет существенно сократить расходы на построение IP-RAN.

Пятый сценарий применяется при развертывании БС нового поколения на базе IP. Такие базовые станции могут использовать объединенный групповой канал, состоящий из нескольких потоков E1. В этом случае при подключении нескольких БС через радиорелейные или проводные каналы к одному устройству доступа рациональным решением является терминация сессий Multilink PPP на устройстве доступа и агрегация IP-трафика в единый поток. Определение трафика от каждой базовой станции выполняется в соответствии с ее IP-адресом.

Последний, шестой, сценарий продиктован переходом операторов на сети третьего поколения. Этот процесс не будет мгновенным, а динамика спроса на новые услуги с трудом поддается прогнозированию. Операторы продолжают получать высокие доходы от сетей 2G и не собираются их сворачивать, поэтому на одной площадке не исключена работа БС второго и третьего поколений. В данном случае устройство доступа должно принимать от базовых станций трафик разных типов (IP, TDM, ATM) и обеспечивать его передачу по виртуальным IP-каналам. Синхросигнал также передается через IP-сеть.

Большинство сложностей построения RAN на базе IP вызвано необходимостью в «подгонке» возможностей пакетной технологии под требования мобильного оборудования, изначально работавшего с протоколами TDM и ATM. Однако новые технологии IP, такие как PWE3 или передача синхросигнала по IP-каналам, позволяют операторам строить универсальные мультисервисные транспортные сети для предоставления услуг 2G и 3G, развития дополнительных сервисов.

Отметим, что компания Huawei первая предложила рынку базовые станции, подключаемые к сети IP, с поддержкой технологий Ethernet и TDM-over-IP. При этом заказчикам предоставляются не отдельные сетевые элементы, а комплексные решения IP-RAN. Не ограничиваясь новыми базовыми станциями, Huawei выпустила целую линейку оборудования серии CX с поддержкой технологий передачи трафика TDM, ATM, IP поверх MPLS и реализовала передачу синхросигнала через IP. Высокая плотность портов E1, IMA E1, FE позволяет подключать к одному устройству CX базовые станции второго и третьего поколения. Для повышения надежности решения IP-RAN на уровне доступа реализованы технологии надежных кольцевых структур RPR и RRPP. В том случае, когда построение колец доступа невозможно, устройства CX обеспечивают построение сети древовидной топологии на основе протоколов STP и RSTP.

Алексей Гордиенко ([email protected]) - менеджер по оборудованию передачи данных компании Huawei

Транспортная сеть связи – это сеть, обеспечивающая перенос разных видов информации с использованием различных протоколов передачи.

Транспортные сети можно разделить на три уровня . Сети первого уровня – локальные или местные. Они организуются в городских или сельских местностях. Сети второго уровня – региональные или внутризоновые . Третий уровень – глобальная (магистральная) сеть. При построении транспортных сетей разных уровней сохраняется единообразие в способах транспортировки информации, методах управления сетями и организации синхронизации. Различия в сетях разного уровня состоят лишь в иерархии используемых скоростей, архитектуре сетей (кольцевая, звездообразная, линейная и др.), мощности узлов кросс-коммутации. В качестве линии передачи в транспортных сетях используются волоконно-оптические линии передачи, радиорелейные и спутниковые стволы, коаксиальные кабели.

На рисунке 2.8 показана структура местной (города) транспортной сети на базе технологии SDH.

Рис. 2.8 Структура транспортной сети города на базе технологии SDH

Для построения современных транспортных и корпоративных сетей любого уровня наибольшее применение находят сетевые технологии ПЦИ/ PDH, СЦИ/SDH и ATM. Технология ATM , в отличие от технологий PDH и SDH, охватывает не только уровень первичной или транспортной сети, но и объединяет уровни вторичных сетей и сетей доступа с первичной сетью. В последние годы получили развитие такие технологии как DWDM, IP поверх ATM и IP поверх SDH. В настоящее время наибольший прогресс достигнут в создании магистральных сетей на основе вышеназванных технологий. Появились новые технологии передачи IP-трафика с унифицированными соединениями IP-маршрутизаторов, использующими в качестве канальной среды такие технологии, как WDM, DWDM, SDH и ОВ в виде «темных волокон». В транспортных сетях используется иерархия скоростей передачи в соответствии с международными рекомендациями ITU-T и получившим наибольшее распространение, европейским стандартом, который применяют на сетях связи России. Технология PDH поддерживает следующие уровни иерархии цифровых каналов: абонентский или основной канал Е0 (64 кбит/с) и пользовательские каналы уровней Е1 (2,048 Мбит/с), Е2 (8,448 Мбит/с), Е3 (34,368 Мбит/с), Е4 (139,264 Мбит/с). Уровень цифрового канала Е5 (564,992 Мбит/с) определен в рекомендациях ITU-T, но на практике его обычно не используют. Цифровые каналы PDH являются входными (полезной нагрузкой) для пользовательских интерфейсов сетей SDH.

Современная цифровая первичная или транспортная сеть, как правило, строится на основе совокупности аппаратуры PDH и SDH. Цифровые каналы транспортной сети с пропускной способностью (скоростью передачи) от 64 кбит/с до 39813,12 Мбит/с создаются на основе технологий PDH и SDH (табл.8.4.1, табл.8.4.2). Технологии PDH и SDH взаимодействуют друг с другом через процедуры мультиплексирования и демультиплексирования цифровых потоков Е1, Е3 и Е4 PDH в аппаратуре SDH. В табл.8.4.1 приведены общие характеристики основного цифрового канала Е0 и сетевых трактов Е1, Е2, Е3 и Е4 PDH.

Технология SDH по сравнению с PDH имеет следующие особенности и преимущества:

 предусматривает синхронную передачу и мультиплексирование, что приводит к необходимости построения систем синхронизации сети;

 предусматривает прямое мультиплексирование и прямое демультиплексирование (ввод-вывод) цифровых потоков PDH;

 основана на стандартных оптических и электрических интерфейсах, что обеспечивает совместимость аппаратуры различных производителей;

 позволяет объединить системы PDH европейской и американской иерархии;

 обеспечивает полную совместимость с аппаратурой PDH, ATM и IP;

 обеспечивает многоуровневое управление и самодиагностику транспортной сети.

Технология ATM , основанная на статистическом мультиплексировании различных входных сигналов, разрабатывалась сначала как часть широкополосной технологии B-ISDN. Она предназначена для высоко-скоростной передачи разнородного трафика: голоса, данных, видео и мультмедиа, и ориентирована на использование физического уровня высокоскоростных сетевых технологий, таких как SDH, FDDI и др. В технологии ATM базовые значения скоростей передачи для интерфейсов доступа (пользовательских интерфейсов) соответствуют цифровым каналам Е1 (2 Мбит/с), Е3 (34 Мбит/с), Е4 (140 Мбит/с) PDH, ATM (25 Мбит/с), Fast Ethernet, FDDI (100 Мбит/с) и некоторым другим. Базовые скорости линейных интерфейсов передачи соответствуют скоростям передачи цифровых каналов STM-N (N=1, 4, 16, 64 (табл.2)) системы SDH.

Технология ATM была первой технологией, на основе которой вместо стандартных и многочисленных сетей (телефонной, телеграфной, факсимильной связи и сетей передачи данных) предполагалось построить единую цифровую сеть на базе широкого использования ВОЛС. Однако из-за высокой стоимости аппаратуры ATM и широкого проникновения протокола IP в сети глобальных масштабов, не способствовали осуществлению этих планов в полной мере. Технология IP является основой сети Интернет и представляет собой набор протоколов, называемый стеком протоколов TCP/IP, а протокол управления передачей IP – протоколом сети Интернет. Именно он реализует межсетевой обмен. Главным достоинством является то, что стек протоколов TCP/IP обеспечивает надежную связь между сетевым оборудованием различных производителей. Протоколы стека TCP/IP описывают формат сообщений и указывают, каким образом следует обрабатывать ошибки, предоставляют механизм передачи сообщений в сети независимо от типа применяемого оборудования. Однако за время существования стека протоколов TCP/IP выявились слабости и недостатки архитектуры протоколов TCP/IP. Во многих случаях IP-технология не может удовлетворить требованиям новых приложений. Прежде всего, она должна обеспечивать более высокую пропускную способность. Однако этого не достаточно. Требуется дополнить IP-технологию средствами управления пропускной способностью, которые бы гарантировали приложениям нужное им качество обслуживания QoS.

Развитие инфотелекоммуникационных технологий постоянно стимулируется поиском возможностей и технологий, способных наиболее эффективно объединять сети, превращая их в мультисервисные широкополосные и сверхширокополосные. В настоящее время наибольший прогресс достигнут в создании глобальных магистральных сетей на основе технологий IP поверх ATM и IP поверх SDH. Появились новые технологии передачи IP-трафика, предусматривающие унифицированные соединения маршрутизаторов через системы и среды, такие как WDM, DWDM, «темное волокно». Примером такой технологии может быть предложенный в 1999г. компанией Cisco Systems протокол SRP (Spatial Reuse Protocol)который впоследствии стал называться DPT (Dynamic Packet Transport). В технологии DPT воплотились лучшие качества таких технологий как SDH, FDDI и др. Технология DPT позволяет избежать промежуточных протоколов других сетевых технологий, например, SDH и ATM при передаче трафика IP по волокну. К основным преимуществам технологии DPT можно отнести следующие. Применение формата SDH (уровня STM-1) позволяет передавать трафик DPT по сетям SDH, благодаря чему обеспечивается их совместимость. При этом магистральные тракты занимают полосу пропускания лишь между точками передачи и приема сигналов, что позволяет более эффективно использовать пропускную способность кольцевой топологии сети DPT. Технологии DPT присущи развитые возможности резервирования трафика за счет реализации механизмов восстановления в кольцевой топологии сети. Применение протокола IP позволяет реализовать сквозной мониторинг всей сети DPT, начиная от магистральной (транспортной) и заканчивая сетями доступа.