Kvant. Разрешающая способность

Используя даже идеальную оптическую систему (такую, для которой отсутствуют дефекты и аберрации), невозможно получить стигматическое изображение точечного источника, что объясняется волновой природой света. Изображение любой светящейся точки в монохроматическом свете представляет собой дифракционную картину, т. е. точечный источник отображается в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами.

Согласнокритерию Рэлея, изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого (рис. 265, а). При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для разрешения линий  1 и  2 . Если критерий Рэлея нарушен, то наблюдается одна линия (рис. 265, б).

1. Разрешающая способность объектива. Если на объектив падает свет от двух удаленных точечных источников S 1 и S 2 (например, звезд) с некоторым угловым расстоянием , то вследствие дифракции световых волн на краях диафрагмы, ограни­чивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами (рис. 266).Можно доказать, что две близлежащие звезды, наблюдаемые в объективе в монохроматическом свете, разрешимы, если угловое расстояние между ними

где  - длина волны света, D - диаметр объектива.

Разрешающей способностью (разрешающей силой) объектива называется величина

где  - наименьшее угловое расстояние между двумя точками, при котором они еще оптическим прибором разрешаются.

Согласно критерию Рэлея, изображения двух одинаковых точек разрешимы, когда центральный максимум дифракционной картины для одной точки совпадает с первым минимумом дифракционной картины для другой (рис. 266). Из рисунка следует, что при выполнении критерия Рэлея угловое расстояние  между точками должно быть равно , т. е. с учетом (183.1)



Следовательно, разрешающая способность объектива

т. е. зависит от его диаметра и длины волны света.

Из формулы (183.2) видно, что для увеличения разрешающей способности оптичес­ких приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолето­вое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение. Поэтому электронный микроскоп имеет очень высокую разрешающую способность.

Разрешающей способностью спектрального прибора называют безразмерную ве­личину

где  - абсолютное значение минимальной разности длин волн двух соседних спект­ральных линий, при которой эти линии регистрируются раздельно.

2. Разрешающая способность дифракционной решетки. Пусть максимум т- го поряд­ка для длины волны  2 наблюдается под углом , т. е., согласно (180.3), d sin=m  2 . При переходе от максимума к соседнему минимуму разность хода меняется на /N (см. (180.4)), где N - число щелей решетки. Следовательно,минимум  1 , наблюдаемый под углом min , удовлетворяет условию d sin min =m  1 + 1 /N . По критерию Рэлея,  = min , т. е. m  2 =m  1 + 1 /N или  2 / ( 2  1)=mN. Tax как  1 и  2 близки между собой, т. е.  2 – 1 = то, согласно (183.3),

Таким образом, разрешающая способность дифракционной решетки пропорциональна порядку m спектра и числу N щелей, т. е. при заданном числе щелей увеличивается при переходе к большим значениям порядка m интерференции. Современные дифракционные решетки обладают довольно высокой разрешающей способностью (до 210 5).

Дисперсия Света

Как уже говорилось, свет, проходя через трехгранную призму, преломляется и при выходе из призмы отклоняется от своего первоначального направления к основанию призмы. Величина отклонения луча зависит от показателя преломления вещества призмы, и, как показывают опыты, показатель преломления зависит от частоты света. Зависимость показателя преломления вещества от частоты (длины волн) света называется дисперсией. Очень просто наблюдать явление дисперсии при пропускании белого света через призму (рис. 102). При выходе из призмы белый свет разлагается на семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Меньше всех отклоняется красный свет, больше - фиолетовый. Это говорит о том, что стекло имеет для фиолетового света наибольший показатель преломления, а для красного - наименьший. Свет с разными длинами волн распространяется в среде с разными скоростями: фиолетовый с наименьшей, красный - наибольшей, так как n= c/v ,

В результате прохождения света через прозрачную призму получается упорядоченное расположение монохроматических электромагнитных волн оптического диапазона - спектр.

Все спектры делятся на спектры испускания и спектры поглощения. Спектр испускания создается светящимися телами. Если на пути лучей, падающих на призму, поместить холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии.

При этом получим спектр поглощения газа. Немецкий физик Г. Кирхгоф (1824-1887) открыл закон, согласно которому спектральный состав света, который излучается телами в горячем состоянии, поглощается ими в холодном состоянии (атомы данного элемента поглощают те длины волн, которые излучают при высокой температуре).

Спектры испускания делятся насплошные, линейчатые и полосатые. Сплошной спектр дают раскаленные твердые и жидкие тела. Линейчатый спектр - это совокупность определенных спектральных линий (на черном фоне). Такой спектр дают возбужденные газы, находящиеся в атомарном состоянии. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Полосатый спектр представляет собой отдельные спектральные полосы, разделенные темными промежутками. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

ЭЛЕКТРОННАЯ ТЕОРИЯ ДИСПЕРСИИ СВЕТА

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где  - диэлектрическая проницаемость среды,  - магнитная проницаемость. В оп­тической области спектра для всех веществ 1, поэтому

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n , являясь переменной, остается в то же время равной определенной постоянной . Кроме того, значения n , получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости от частоты световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна

где { - диэлектрическая восприимчивость среды, 0 - электрическая постоянная, Р - мгновенное значение поляризованности. Следовательно,

(186.2)

т.е. зависит от Р . В данном случае основное значение имеет электронная поляризация, т.е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока ( 10 15 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны -оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р=ех, где е - заряд электрона, х - смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n 0 , то мгновенное значение поляризованности

Из (186.2) и (186.3) получим

Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты , т. е. изменяющимся по гармоническому закону: Е = Е 0 cost.

Уравнение вынужденных колебаний электрона (см. §147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

где т, - масса i- го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления n зависит от частоты внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в даль­нейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от = 0 до = 0 n 2 больше единицы и возрастает с увеличением (нормальная дисперсия); при = 0 n 2 = ±; в области от = 0 до = n 2 меньше единицы и возрастает от –до 1 (нормальная дисперсия). Перейдя от n 2 к n , получим, что график зависимости n от имеет вид, изображенный на рис. 270. Такое поведение n вблизи 0 - результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции n () вблизи 0 задастся штриховой линией АВ. Область АВ - область аномальной дисперсии (n убывает при возрастании ), остальные участки зависимости n от описывают нормальную дисперсию (n возрастает с возрастанием ).

Российскому физику Д. С. Рождественскому (1876-1940) принадлежит классичес­кая работа по изучению аномальной дисперсии в парах натрия. Он разработал ин­терференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависи­мость n от, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.

Разрешающая способность оптических приборов разреша́ющая спосо́бность оптических приборов

характеризует их способность давать раздельные изображения двух близких друг к другу точек объекта. Из-за дифракции света изображение точки - кружок (светлое пятно, окружённое кольцами). Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Количественной мерой Разрешающей способности обычно служит обратная величина. Разрешающая способность прибора может быть оценена по его аппаратной функции.


Энциклопедический словарь . 2009 .

Смотреть что такое "разрешающая способность оптических приборов" в других словарях:

    Современная энциклопедия

    Разрешающая способность - оптических приборов, характеризует их способность давать раздельные изображения двух близко расположенных точек. Из за дифракции света изображение точки представляет собой не строго точку, а кружок (светлое пятно, окруженное кольцами). Наименьшее … Иллюстрированный энциклопедический словарь

    Оптических приборов характеризует их способность давать раздельные изображения двух близких друг к другу точек объекта. Из за дифракции света изображение точки кружок (светлое пятно, окруженное кольцами). Наименьшее линейное или угловое… … Большой Энциклопедический словарь

    - (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельное изображение двух близких друг к другу точек объекта. Наименьшее линейное (или угловое) расстояние между двумя точками, начиная с которого их… … Физическая энциклопедия

    Разрешающая способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная …

    Разрешающая способность - – (разрешающая сила) оптических приборов (объективов), характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с… … Энциклопедический словарь СМИ

    I Разрешающая способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя… … Большая советская энциклопедия - 1) оптических приборов способность давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с к рого их изображения сливаются, называется линейным или… … Криминалистическая энциклопедия

Разрешающая способность - это количество элементов в заданной области. Этот термин применим ко многим понятиям, например, таким как:

    разрешающая способность графического изображения;

    разрешающая способность принтера как устройства вывода;

    разрешающая способность мыши как устройства ввода.

Например, разрешающая способность лазерного принтера может быть задана 300 dpi (dot per inche - точек на дюйм), что означает способность принтера напечатать на от­резке в один дюйм 300 отдельных точек. В этом случае элементами изображения явля­ются лазерные точки, а размер изображения измеряется в дюймах.

Разрешающая способность графического изображения измеряется в пикселах па дюйм. Отмстим, что пиксел в компьютерном файле не имеет определенного размера, так как храпит лишь информацию о своем цвете. Физический размер пиксел приобретает при отображении па конкретном устройстве вывода, например, на мониторе или принтере.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода.

Разрешение печатного изображения и понятие линиатуры. Размер точки растро­вого изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растри­ровании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм и называется линиатура .

Разрешающая способность технических устройств по-разному влияет на вывод век­торной и растровой графики.

Так, при выводе векторного рисунка используется максимальное разрешение уст­ройства вывода. При этом команды, описывающие изображение, сообщают устройству вывода положение и размеры какого-либо объекта, а устройство для его прорисовки использует максимально возможное количество точек. Таким образом, векторным объект, например, окружность, распечатанная на принтерах разного качества, имеет па листе бумаги одинаковые положение и размеры. Однако более гладко окружность выглядит при печати па принтере с большей разрешающей способностью, так как состоит из боль­шего количества точек принтера.

Значительно большее влияние разрешающая способность устройства вывода оказывает па вывод растрового рисунка. Если в файле растрового изображения не определено, сколь­ко пикселов на дюйм должно создавать устройство вывода, то по умолчанию для каждого пиксела используется минимальный размер. В случае лазерного принтера минимальным элементом служит лазерная точка, в мониторе - вндеопиксел. Так как устройства вывода отличаются размерами минимального элемента, который может быть ими создан, то размер растрового изображения при выводе на различных устройствах также будет неодинаков.

    1. Цветовые модели

Некоторые предметы видимы потому, что излучают свет, а другие - потому, что его отражают. Когда предметы излучают свет, они приобретают в нашем восприятии тот цист, который видит глаз человека. Когда предметы отражают свет, то их цвет определя­ется цветом падающего па них света и цветом, который эти объекты отражают. Излучаемый свет выходит из активного источника, например, экрана монитора. Отраженный свет отражается от поверхности объекта, например, листа бумаги.

Существуют два метода описания цвета; система аддитивных и субтрактивных цветов.

Система аддитивных цветов работает с излучаемым светом. Аддитивный цвет по­лучается при объединении трех ос­новных цветов: красного, зеленого и синего (Red, Green, Blue – RGB) При смешивании их в разных пропорциях получается соответствующий цвет. Отсутствие этих цветов пред­ставляет в системе черный цвет. Схематично смешение цветов показано на рис. 2, а.

а) аддитивный цвет б) Субтрактивный цвет

Рис. 2. Система смешения цветов

В системе субтрактивных цветов происходит обратный процесс: какой-либо цвет по­лучается вычитанием других цветов на общего луча света. При этом белый цвет получается в результате отсутствия всех цветов, а присутствие всех цветов даст черный цвет. Система субтрактнвных цветов работает с отраженным цветом, например, от листа бумаги. Белая бумага отражает все цвета, окрашенная - некоторые поглощает, остальные отражает.

В системе субтрактнвиых цветов основными являются голубой, пурпурный и жел­тый цвета (Cyan, Magenta, Yellow - CMY). Они являются дополнительные красном)", зеленому и синему Когда эти цвета смешивают на бумаге в равной пропорции, получается черный Цвет. Этот процесс проиллюстрирован на рис. 2 б. В связи с тем, что типографские краски не полностью поглощают свет, комбинация трех основных цветов выглядит тем­но-коричневой. Поэтому для корректировки тонов и получения истинно черного цвета в принтеры добавляют немного черной краски. Системы цветов, основанные па таком принципе четырехцветной печати, обозначают аббревиатурой CMYK (Cyan, Magenta, Yellow, blасК).

Существуют и другие системы кодирования цветов, например, представление его в виде тона, насыщенности и яркости (Hue, Saturation, Brightness – HSB).

Тон представляет собой конкретный оттенок цвета, отличный от других: красный, голубой, зеленый и т.п. Насыщенность характеризует относительную интенсивность цвета.

При уменьшении, например, насыщенности красного цвета, он делается более пастель­ным или блеклым. Яркость (или освещенность) цвета показывает величину черного от­тенка, добавляемого к цвету, что делает его более темным. Система HSB хорошо согла­суется с моделью восприятия цвета человеком. Тон является эквивалентом длины вол­ны света, насыщенность – интенсивности волны, а яркость – общего количества света. Недостатком этой системы является необходимость преобразования ее в другие систе­мы; RGB – при выводе изображения на монитор; CMYK – при выводе на четырехцвет­ный принтер.

Рассмотренные системы работают со всем спектром цветов - миллионами возмож­ных оттенков. Однако пользователю часто достаточно не более нескольких сотен цве­тов. В этом случае удобно использовать индексированные палитры - наборы цветов, содержащие фиксированное количество цветов, например, 16 или 256, из которых мож­но выбрать необходимый цвет. Преимуществом таких палитр является то, что они зани­мают гораздо меньше памяти, чем полные системы RGB и CMYK.

При работе с изображением компьютер создает палитру и присваивает каждому цве­ту номер, затем при указании цвета отдельного пиксела или объекта просто запомина­ется номер, который имеет данный цвет в палитре. Для запоминания числа от 1 до 16 необходимо 4 бита памяти, а от 1 до 256 - 8 битов, поэтому изображения, имеющие 16 цветов называют 4-битовыми, а 256 цветов - 8-битовыми. При сравнении с 24 битами, необходимыми для хранения полного цвета в системе RGB, или с 32 битами - в системе CMYK, экономия памяти очевидна.

При работе с палитрой можно применять любые цвета, например, системы RGB, но ограниченное их количество. Так, при использовании 256-цветовой палитры в процессе ее создания и нумерации каждый цвет в палитре описывается как обычный 24-битовый цвет системы RGB. А при ссылке на какой-либо цвет уже указывается его номер, а не конкретные данные системы RGB, описывающие этот цвет.

Разрешающая способность оптических приборов, характеризует способность давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Всякая система имеет ограниченное отверстие, которое огибается сферической волной, исходящей из объекта, вызывая дифракцию. Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете, радужно окрашенными - в белом свете). Центральный максимум отделен абсолютным минимумом от других, менее интенсивных, максимумов. Эти максимумы более высоких порядков не оказывают существенного влияния на дифракционную картину. Качество изображения оптической системы зависит от ширины этого максимума, т. е. от расстояния, на котором находится первый абсолютный минимум от центра дифракционной фигуры. Чем меньше площадь максимума, тем лучше качество изображения. Ширина центрального максимума является функцией апертурного угла со стороны изображения и длины волны света. Чем меньше апертурный угол и чем больше длина волны, тем максимум шире.

Факторы разрешающей способности глаза можно разделить на «нервные», к которым относятся способы" переработки сигнала в сетчатке и лежащих выше отделах зрительного анализатора, и на «оптические». Это в первую очередь дифракция на радужке, собственные аберрации глаза, рассеяние света на поверхностях глазных сред, влияние неровностей роговицы, децентрированности оптической системы глаза, неправильной фокусировки, контрастность объектов. При разных условиях зрительной работы эти факторы влияют различно. Так, при дневном зрении вследствие малого размера зрачка увеличивается влияние дифракции, аберрации же сказываются меньше, и совсем не влияет на сетчаточное изображение отклонение периферической зоны роговицы от правильной формы. При ночном зрении, когда зрачок расширен и работает не только центральная, но и периферическая зона роговицы, основное снижение качества изображения и разрешающей способности обусловлено неправильной формой роговицы и рассеянием света на глазных средах.

Образование изображения на сетчатке с точки зрения волновой природы света.

В глазу, так же как в большинстве других оптических систем, падающая от объекта сферическая волна ограничивается круглой апертурной диафрагмой - зрачком глаза, от диаметра которой и зависит ширина центрального максимума. Дифракционная фигура от круглого отверстия представляет собой дифракционный кружок. Центральный максимум, который воспринимается как «изображение» точки, имеет в этом случае радиус:

Так как этот радиус зависит от длины волны, то величина центрального максимума и радиус бокового максимума неодинаковы для различных цветов. Поэтому изображение точки в белом свете бывает окрашенным. Наличие в оптической системе глаза довольно больших аберраций приводит к перераспределению освещенности в дифракционной фигуре - освещенность в центральном максимуме уменьшается, а в дифракционных кольцах возрастает. Диаметр центрального максимума при этом остается прежним, а в боковых в большей или меньшей степени изменяется. Человеческий глаз представляет собой биологическую оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм.

Оптический и электронный микроскопы. Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому.В оптическом микроскопе носителем информации о предметеявля­ется фотон, свет. Источником света обычно служит лампа накаливания. После взаимодействия с предметом (поглощение, рассеяние, дифракция) поток фотонов преобразуется и содержит информацию о предмете. Поток фотонов формируется с помощью оптических устройств, в основном линз: конденсора, объектива, окуляра, Изображение регистрируется глазом (или фотопластинкой, фотолюминесцирующим экраном и т.д.).

В электронном микроскопе носителем информации о предмете является электрон, а источником электронов - подогреваемый катод. Ускорение электронов и образование пучка осуществляют фокусирующим электродом и анодом - системой, называемой электронной пушкой. После взаимодействия с предметом (в основном рассеяние) поток электронов преобразуется и содержит информацию о предмете. Формирование потока электронов происходит под воздействием электрического поля (система электродов и конденсаторов) и магнитного (система катушек с током). Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (конденсорная; электронная, служащая объективом, проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране.

Главные максимумы попарно симметрично располагаются, отно­сительно центрального и в некоторой степени дублируют друг друга. Совокупность максимумов, расположенных с одной сторо­ны от центра, вместе с централь­ным достаточна, чтобы передать информацию о предмете. Следо­вательно, экранирование лучей, идущих от максимумов, распо­ложенных по другую сторону от центра, лишь уменьшит яркость изображения предмета.

Как видно из формулы (где А - числовая апертура; n - показатель преломления среды, находящейся между предметом и линзой объектива), один из способов уменьшения предела разрешения микроскопа - использование света с меньшей длиной волны. Числовая апертура может быть увеличена с помощью специаль­ной жидкой среды - иммерсии - в пространстве между объективом и покровным стеклом микроскопа. Окуляр совершенно не влияет на разрешающую способность микроскопа, он только создает увеличен­ное изображение объектива.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

Поляризация света-явление особого видоизменения естественных световых лучей, исходящих от обыкновенного источника света, при котором лучи приобретают как бы различные свойства по различным направлениям, перпендикулярным к направлению луча; такое свойство лучей может быть вызвано в самом источнике света, если поставить последний в некоторые определенные условия, но оно может быть искусственно придано и лучам, вышедшим из источника света в естественном их состоянии.
Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное направление колебаний вектора Е, то имеем дело с частично поляризованным светом. Свет, в котором вектор Е колеблется только в одном направлении, перпендикулярном лучу, называется плоско поляризованным.
Двойное лучепреломление, представляют собой волокнистые объекты, обладающие единственной оптической осью. Хотя это слишком упрощает положение вещей, при проведении очень многих биологических исследований удобно принять, что длинная ось волокна совпадает с оптической осью структуры.
В поляризационных устройствах - поляризаторах для получения полностью или частично поляризованного света используется одно из трёх физических явлений: поляризация при отражении света или преломлении света на границе раздела двух прозрачных сред; линейный дихроизм; двойное лучепреломление.

При построении изображений в геометрической оптике исходят из следующих приближений:1. Свет в однородной "среде распространяется прямолинейно (т. е. явлениями дифракции пренебрегают).2.Отдельные лучи распространяются независимо друг от друга (т. е. интерференцией лучей пренебрегают).3. При переходе луча из среды с показателем преломления п в среду с показателем преломления п" на границе раздела выполняется соотношение ti sin i = п" sin т между углом падения i и углом преломления г. Отражение рассматривается как частный случай преломления обратно в первую среду и ход лучей определяется простой подстановкой в полученные из валокна преломления. Частичное отражение лучей при преломлении и частичное поглощение их при от­ражении не учитываются.4. Для простоты расчет ведется лишь для лучей, падающих и отражающихся под столь малыми углами, что для них можно пользоваться приближенными соотношениями:sin а « tg а » а.
Центрированной оптической системой называется система, центры всех поверхностей которой располагаются на одной прямой. Эта прямая носит название оптической оси системы. Рассмотрим преломление параксиальных лучей (т. е. лучей, проходящих бесконечно близко около оптической оси) одной сферической поверхностью. В случае, когда имеется одна сферическая поверхность, оптической осью может быть любая прямая, проходящая.
Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону через центр поверхности.
Эндоско́п - группа оптических приборов различного назначения. Различают медицинские и технические эндоскопы. Технические эндоскопы используются для осмотра труднодоступных полостей машин и оборудования при техническом обслуживании и оценке работоспособности (лопатки турбин, цилиндры двигателей внутреннего сгорания, оценка состояния трубопроводов и так далее), кроме того, технические эндоскопы используются в системах безопасности для досмотра скрытых полостей (в том числе для досмотра бензобаков на таможне). Технические эндоскопы в СССР выпускались в Харькове.Медицинские эндоскопы используются в медицине для исследования и лечения полых внутренних органов человека (пищевод, желудок, бронхи, мочеиспускательный канал, мочевой пузырь, женские репродуктивные органы, почки, органы слуха), а также брюшной и других полостей тела.

Аберрации оптических систем (лат. - отклонение) - искажения, погрешности изображения, вызванные несовершенством оптической системы. Аберрациям, в разной степени, подвержены любые объективы, даже самые дорогие. Считается, что чем больше диапазон фокусных расстояний объектива, тем выше уровень его аберраций.Сфери́ческая аберра́ция - аберрация оптических систем; нарушение гомоцентричности пучков лучей от точечного источника, прошедших через оптическую систему без нарушения симметрии строения этих пучков (в отличие от комы и астигматизма). Расстояние δs" по оптической оси между точками схода нулевых и крайних лучей называется продольной сферической аберрацией .Диаметр δ" кружка (диска) рассеяния при этом определяется по формуле

Где2h 1 - диаметр отверстия системы;a" - расстояние от системы до точки изображения;δs" - продольная аберрация.Для объектов расположенных в бесконечности ,где f" - заднее фокусное расстояние.Для наглядности сферическую аберрацию, как правило, представляют не только в виде таблиц, но и графически. Световые лучи, проходящие сквозь линзу вблизи оптической оси (ближе к центру), фокусируется в области В , дальше от линзы. Световые лучи, проходящие сквозь краевые зоны линзы, фокусируются в области А , ближе к линзе. Таким образом, получается, что края линзы имеют более короткое фокусное расстояние, чем це Хроматические аберрации (ХА) - явление вызванное дисперсией света проходящего через объектив, т.е. разложением луча света на составляющие. Лучи с разной длиной волны (разного цвета) преломляются под разными углами, поэтому из белого пучка образуется радуга.нтр. Хроматические аберрации приводят к снижению чёткости изображения и появлению цветной «бахромы», особенно на контрастных объектах. Астигматизм (от греч. а - отрицательная частица и stigme - точка), недостаток оптической системы, получающийся вследствие неодинаковой кривизны оптической поверхности в разных плоскостях сечения падающего на неё светового пучка. Сферическая волновая поверхность после прохождения оптической системы деформируется и перестаёт быть сферической.Астигмати́зм (медицина) - дефект зрения, связанный с нарушением формы хрусталика, роговицы или глаза в результате чего человек теряет способность к чёткому видению. Оптическими линзами сферической формы дефект компенсируется не полностью. Если астигматизм не лечить, он может привести к косоглазию и резкому падению зрения. Без коррекции астигматизм может вызвать головные боли и резь в глазах. Поэтому очень важно регулярно посещать врача-офтальмолога. Цилиндрические линзы по форме напоминают автомобильную шину, искривленную в одном направлении больше, чем в другомСветовая микроскопия основывается на законах геометрической оптики и волновой теории образования изображения, в качестве освещения используются естественный или искусственные источники света. Классический микроскоп представляет собой штатив с подвижным тубусодержателем, осветителем и предметным столиком. Прикрепленный к ним тубус (полая трубка) оснащен системой линз. К предметному столику снизу прикреплено зеркало. Изменяя положение осветителя, зеркала и рабочей поверхности предметного столика с помощью специальных вентилей, можно добиться точной фокусировки световых лучей на исследуемом объекте и появления отчетливого изображения в объективе. На нижнем конце тубуса имеются 2-3 подвижных объектива с разной степенью увеличения, на верхнем конце - окуляр. Световая микроскопия подразделяется на фазовоконтрастную, интерференционную, поляризационную, люминесцентную, инфракрасную, стереоскопическую и основана на использовании различных свойств света и изучаемого объекта

Со́лнечная излучение (радиа́ция) - электромагнитное и корпускулярное излучение Солнца. Спектральный диапазон электромагнитного излучения Солнца очень широк - от радиоволн до рентгеновских лучей - однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра. Солнечное излучение дошедшее до Земли проходит строжайшую чистку в слоях земной атмосферы. Атмосфера Земли начинает уничтожать жесткие ультрафиолетовые и рентгеновские лучи на высоте 350 км. На такой же высоте отражаются длинные радиоволны. Мягкое ультрафиолетовое излучение поглощается на высоте 30-35 км., где происходит образование озона. Остаточное излучение дошедшее до поверхности земельного покрова поглощается морями и океанами, а также сушей.Солнечная постоянная – это количество солнечной энергии, приходящейся на поверхность площадью в квадратный метр и развернутую перпендикулярно солнечным лучам на границе земной атмосферы.Инфракра́сное излуче́ние - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм). Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. Инфракрасные лучи применяются в физиотерапии. Проникновение инфракрасных волн в глубину тела (до 7 см) прогревает ткани, органы, мышцы, кости и суставы и ускоряет поток крови и лимфы. Инфракрасное излучение также позволяет ослабить действие ядохимикатов, g-излучения, способствуя повышению неспецифического иммунитета. ИК-лучи подсушивают кожу, а потому могут использоваться для лечения некоторых кожных заболеваний или ожогов. Ультрафиоле́товое излуче́ние - электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 - 10 нм, 7,9·1014 - 3·1016 Герц). Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза. Применение ультрафиолетового излучения в медицине связано с тем, что оно обладает бактерицидным, мутагенным, терапевтическим (лечебным), антимитотическим и профилактическим действиями, дезинфекция; лазерная биомедицина. Дефицит ультрафиолетовых лучей ведет к авитаминозу, снижению иммунитета, слабой работе нервной системы, появлению психической неустойчивости.Ультрафиолетовое излучение оказывает существенное воздействие на фосфорно-кальциевый обмен, стимулирует образование витамина D и улучшает все метаболические процессы в организме.

Теплово́е излуче́ние или лучеиспускание - передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.Характеристики теплового излучения - энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м2с)] = [Вт/м2] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела (R) - мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФпад, то одна его часть отражается от поверхности тела - dФотр, другая часть проходит в тело и частично превращается в теплоту dФпогл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФпр: α = dФпогл/dФпад. Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела. - монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: αλ,T = f(λ,T)Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами. Для них α =1. Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.Закон Кирхгофа . Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.Закон Стефана-Больцмана. Общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

Закон Вина. длина волны λmax, на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т:

λmax = в/t, где в = 2,9*10-3 м·К- постоянная Вина.Формула Планка. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10-34 Дж·с постоянная Планка.

Природа рентгеновского излучени Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Длина волны X-лучей колеблется от 70 нм до 10 -5 нм . Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм ), называются мягкими . Длина волны 1 – 10нм характеризует жесткие X-лучи. Они обладают огромной проникающей способностью.я Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым g-излучением. Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).
Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:mv 2 /2 = eU (1) где m, e – масса и заряд электрона, U – ускоряющее напряжение. Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны. Рентгеновские аппараты (синоним рентгеновские установки) - устройства для получения и использования рентгеновского излучения в технических и медицинских целях. Медицинские рентгеновские аппараты в зависимости от назначения разделяют на диагностические и терапевтические. Рентгеновский аппарат состоит из следующих основных узлов. 1. Высоковольтное устройство, включающее трансформатор высокого напряжения (так называемый главный трансформатор), трансформатор накала рентгеновской трубки, систему, выпрямляющую ток, подаваемый на рентгеновскую трубку (в маломощных аппаратах выпрямительное устройство может отсутствовать). 2. Генератор рентгеновых лучей - рентгеновская трубка. 3. Распределительное устройство - пульт управления, регулирующий режимы работы аппарата. 4. Штатив или группы штативов для крепления рентгеновской

Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей l min , называемой границей сплошного спектра, и линейчатого спектра - совокупности отдельных линий, появляющихся на фоне сплошного спектра Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром . Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, чточем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньше l min . Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е. где U- разность потенциалов, за счет которой электрону сообщается энергия Е max , n max - частота, соответствующая границе сплошного спектра. Отсюда граничная дли­на волны что полностью соответствует экспериментальным данным. Измеряя границу рентгеновского сплошного спектра, по формуле (229.1) можно определить эксперименталь­ное значение постоянной Планка h , которое наиболее точно совпадает с современными данными.При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии - линейчатый спектр, опреде­ляемый материалом анода и называемый характеристическим рентгеновским спектром (излучением) .Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей (рентгенодиагностика).Рентгеноскопия . Рентгеновский прибор состоит из источника рентгеновских лучей (рентгеновской трубки) и флуоресцирующего экрана. После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Например, врач непосредственно может пронаблюдать движения легких, прохождение контрастного вещества по желудочно-кишечному тракту. Недостатки этого метода – недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры.Флюорография . Этот метод состоит в получении фотографии с изображением части тела пациента. Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения.Рентгенография. (Радиография рентгеновских лучей). Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Фотографии делаются обычно в двух перпендикулярных плоскостях. Этот метод имеет некоторые преимущества. Рентгеновские фотографии содержат больше деталей, чем изображение на флуоресцентном экране, и потому они являются более информативными. Они могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии. . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.

Метод рентгеновской компьютерной томографии основан на реконструкции изображения определенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотности образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения вдесятки и даже сотни раз. Это расширяет диагностические возможности метода. Компьютерная рентгеновская томография . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.Первое поколение компьютерных томографов (КT) включает специальную рентгеновскую трубку, которая прикреплена к цилиндрической раме. На пациента направляют тонкий пучок рентгеновских лучей. Два детектора рентгеновских лучей прикреплены к противоположной стороне рамы. Пациент находится в центре рамы, которая может вращаться на 180 0 вокруг его тела.Рентгеновский луч проходит через неподвижный объект. Детекторы получают и записывают показатели поглощения различных тканей. Записи делают 160 раз, пока рентгеновская трубка перемещается линейно вдоль сканируемой плоскости. Затем рама поворачивается на 1 0 , и процедура повторяется. Запись продолжается, пока рама не повернется на 180 0 . Каждый детектор записывает 28800 кадров (180x160) в течение исследования. Информация обрабатывается компьютером, и посредством специальной компьютерной программы формируется изображение выбранного слоя.Второе поколение КT использует несколько пучков рентгеновских лучей и до 30 их детекторов. Это дает возможность ускорить процесс исследования до 18 секунд.В третьем поколении КT используется новый принцип. Широкий пучок рентгеновских лучей в форме веера перекрывает исследуемый объект, и прошедшее сквозь тело рентгеновское излучение записывается несколькими сотнями детекторов. Время, необходимое для исследования, сокращается до 5-6 секунд.КТ имеет множество преимуществ по сравнению с более ранними методами рентгенодиагностики. Она характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами. При обработке изображений видеографы позволяют: Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.Повышать контраст и увеличивать интересующий фрагмент изображения.Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток. Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма:1. Когерентное рассеяние . Эта форма взаимодействия происходит, когда фотоны рентгеновских лучей имеют меньшую энергию, чем энергия связи электронов с ядром атома. В таком случае, энергия фотона оказывается не достаточной для освобождения электронов из атомов вещества. Фотон не поглощается атомом, но изменяет направление распространения. При этом длина волны рентгеновского излучения остается неизменной.2. Фотоэлектрический эффект (фотоэффект) . Когда фотон рентгеновского излучения достигает атома вещества, он может выбить один из электронов. Это происходит в том случае, если энергия фотона превышает энергию связи электрона с ядром. При этом фотон поглощается, а электрон высвобождается из атома. Если фотон несет большую энергию, чем необходимо для высвобождения электрона, он передаст оставшуюся энергию освобожденному электрону в форме кинетической энергии. Этот феномен, называемый фотоэлектрическим эффектом, происходит при поглощении относительно низкоэнергетического рентгеновского излучения. 3. Некогерентное рассеяние (эффект Комптона) . Этот эффект обнаружен американским физиком Комптоном. Он происходит, если вещество поглощает рентгеновские лучи малой длины волны. Энергия фотонов таких рентгеновских лучей всегда больше, чем энергия ионизации атомов вещества. Эффект Комптона является результатом взаимодействия высокоэнергетического фотона рентгеновских лучей с одним из электронов внешней оболочки атома, который имеет сравнительно слабую связь с атомным ядром. рентгеновские лучи способны «разбивать» сложные молекулы и атомы организма человека на заряженные частицы и активные молекулы. Как и в случае других видов радиации, опасным считается только рентгеновское излучение определенной интенсивности, которое воздействует на организм человека в течение достаточно долгого промежутка времени. К эффектам, обусловленным действием рентгеновского излучения, а также других ионизирующих излучений относятся: 1) временные изменения в составе крови после относительно небольшого избыточного облучения; 2) необратимые изменения в составе крови (гемолитическая анемия) после длительного избыточного облучения; 3) возникновение катаракт; 4) рост заболеваемости раком (включая лейкемию); 5) более быстрое старение и ранняя смерть


Похожая информация.


линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количественной мерой Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем ) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете , радужно окрашенными - в белом свете ). Теория дифракции позволяет вычислить наименьшее расстояние, разрешаемое системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображения раздельно. Согласно Рэлею (1879), изображения двух точек одинаковой яркости ещё можно видеть раздельно, если центр дифракционного пятна каждого из них пересекается краем 1-го тёмного кольца другого (рис. ). В случае самосветящихся точек, испускающих некогерентные лучи, при выполнении этого критерия Рэлея наименьшая освещённость между изображениями разрешаемых точек составит 74% своего максимального значения, а угловое расстояние между центрами дифракционных пятен (максимумами освещённости) Dj = 1,21 lID, где l - длина волны света, D - диаметр входного зрачка оптической системы (см. Диафрагма в оптике). Если f - фокусное расстояние оптической системы, то линейная величина рэлеевского предела разрешения s = 1,21 lflD. Предел разрешения телескопов и зрительных труб выражают в угловых секундах (см. Разрешающая сила телескопа ), для длины волны l @ 560 нм , соответствующей максимальной чувствительности человеческого глаза, он равен a"= 140/D (D в мм ). Для фотообъективов Разрешающая способность (в оптике) обычно определяют как максимальное количество раздельно видимых линий на 1 мм изображения стандартного тест-объекта (см. Мира ) и вычисляют по формуле = 1470e, где e - относительное отверстие объектива (см. также Разрешающая способность фотографирующей системы; о Разрешающая способность (в оптике) микроскопов см. в ст. Микроскоп ). Приведённые соотношения справедливы лишь для точек, находящихся на оси идеальной оптической системы. Наличие аберраций и погрешностей изготовления увеличивает размеры дифракционных пятен и снижает Разрешающая способность (в оптике) реальных систем, которая, кроме того, уменьшается по мере удаления от центра поля зрения . Разрешающая способность (в оптике) оптического прибора R oп, в состав которого входят оптическая система с Разрешающая способность (в оптике) R oc и приёмник света (фотослой, катод электроннооптического преобразователя и пр.) с Разрешающая способность (в оптике) R п, определяется приближённой формулой 1/R oп = 1/R oc + 1/R п, из неё следует, что целесообразно использовать лишь сочетания, в которых R oc и R п - величины одного порядка. Разрешающая способность (в оптике) прибора может быть оценена по его аппаратной функции , отражающей все факторы, влияющие на качество изображения (дифракцию, аберрации и т.д.). Наряду с оценкой качества изображения по Разрешающая способность (в оптике) широко распространён метод его оценки с помощью частотно-контрастной характеристики . О Разрешающая способность (в оптике) спектральных приборов см. в ст. Спектральные приборы .

Лит.: Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1, М. - Л., 1948; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Волосов Д. С., Фотографическая оптика, М., 1971.

Статья про слово "Разрешающая способность (в оптике) " в Большой Советской Энциклопедии была прочитана 16230 раз