Основные типы структурных данных. Типы структур данных

Тема этой статьи снова касается теории программирования , поэтому придется прибегнуть к различным классификациям и оперировать математическими терминами. Структуры данных – это практически первое, о чем рассказывают в ходе учебных . Оценка сложности алгоритмов – второе. Может показаться, что эти два вопроса мало связаны, но это не так, и по ходу повествования станет ясно почему. Я не буду углубляться в детали, поскольку практика показывает, что в процессе приобретения опыта в в голове остается только самое важное. По-моему, так происходит в любой сфере деятельности. Я постараюсь изложить то, что осталось по этим вопросам в голове у меня.

Классификация структур данных

Структура данных – это форма хранения и представления информации. Определение весьма расплывчато, поэтому специалисты используют различные формы классификации и уточнений. Структуры данных бывают простыми и сложными: представляют атомарную единицу информации или набор однотипных данных. Простые структуры данных характеризуются , например, целочисленный, вещественный, логический, текстовый тип и т.д. Сложные структуры данных делятся на динамические и статические наборы. Динамические в процессе своего жизненного цикла позволяют изменять свой размер (добавлять и удалять элементы), а статические - нет. И наконец, по организации взаимосвязей между элементами сложных структур данных существует следующая классификация:

  • Линейные
    • Массив
    • Список
    • Связанный список
    • Очередь
    • Хэш-таблица
  • Иерархические
    • Двоичные деревья
    • N-арные деревья
    • Иерархический список
  • Сетевые
    • Простой граф
    • Ориентированный граф
  • Табличные
  • Другие
  • Приведенная классификация далеко не полная. Элементами сложных структур данных могут выступать как экземпляры простых, так и экземпляры сложных структур данных, например структура данных лес – это список непересекающихся деревьев. Теперь постараюсь дать краткое описание перечисленным классам сложных структур данных. Первый уровень классификации построен на основе различий в способе адресации и поиска отдельных элементов в наборе сложной структуры данных.

    Линейные структуры данных

    Элемент линейной структуры данных характеризуется порядковым номером или индексом в линейной последовательности элементов.

    Массив – это в статическая линейная структура однотипных данных, оптимизированная для операций поиска элемента по его индексу. Однозначное местоположение элемента в памяти обеспечивается именно однотипностью элементов в массиве и определяется произведением его индекса на размер памяти, занимаемой одним элементом.

    Линейный массив.
    Адрес(элемент(index)) = размер_ячейки * index.

    Список – это динамическая линейная структура данных, в которой каждый элемент ссылается либо только на предыдущий – однонаправленный линейный список , либо на предыдущий и следующий за ним – двунаправленный линейный список . Достоинство этой структуры данных, помимо возможности изменять размер, - это простота реализации. Также, благодаря наличию ссылок, каждый элемент в списке, в отличие от массива, может занимать разный объем памяти. Адрес первого элемента в линейном списке однозначно определяется адресом самого списка.

    Связанный список – это вариант обычного линейного списка, оптимизированный для операций добавления и удаления элементов. Оптимизация заключается в том, что элементы связанного списка не обязаны в памяти располагаться друг за другом. Порядок элементов определяется ссылкой на первый элемент (не обязан быть в самом начале выделенной для списка памяти) и последовательностью ссылок на остальные элементы списка.


    Связанный список.

    Стек – это динамическая линейная структура данных, для которой определены всего две операции изменения набора элементов: добавление элемента в конец и удаление последнего элемента. Еще говорят, что стек реализует принцип LIFO (Last in, First Out) – последним пришел и первым ушел. Например, в ходе выполнения программного кода, вычислительная машина при необходимости вызвать процедуру или функцию сначала заносит указатель на место ее вызова в стек, чтобы при завершении выполнения ее кода корректно вернуться к следующей после точки вызова инструкции. Такая структура данных называется стеком вызовов подпрограмм.

    Стек.

    Очередь – очень похожая не стек, динамическая структура данных, с той лишь разницей, что она реализует принцип FIFO (First in, First out) – первым пришел и первым ушел. За примерами в реальной жизни, как понятно из названия, далеко ходить не надо. В программировании с помощью очередей, например, обрабатывают события пользовательского интерфейса, обращения клиентов к и прочие информационные запросы.

    Очередь.

    Хэш-таблица – наиболее сложный из динамических линейных структур данных тип. Хэш-таблица оптимизирована для быстрого поиска элементов за счет вычисления адреса элемента, как значения хэш-функции. Аргументом хэш-функции является некий ассоциированный с элементом ключ, например, его порядковый номер. Чтобы гарантировать уникальные значения хэш-функции для уникальных значений ключа (исключить коллизии) хэш-таблица, помимо хитрых алгоритмов, также щедро использует оперативную память. Применение хэш-таблиц должно быть оправдано и тщательно продумано.

    Иерархические структуры данных

    Элемент в иерархической структуре данных характеризуется ссылкой на вышестоящий в иерархии элемент (или ссылками на нижестоящие элементы) и (необязательно) порядковым номером в линейной последовательности своего уровня (иерархические списки).

    Деревья – динамическая иерархическая структура данных, представленная единственным корневым узлом и его потомками. Максимальное количество потомков каждого узла и определяет размерность дерева . Отдельно выделяют двоичные или бинарные деревья , поскольку они используются в алгоритмах сортировки и поиска: каждый узел двоичного дерева поиска соответствует элементу из некоторого отсортированного набора, все его “левые” потомки – меньшим элементам, а все его “правые” потомки – большим элементам. Каждый узел в дереве однозначно идентифицируется последовательностью неповторяющихся узлов от корня и до него – путем. Длина пути и является уровнем узла в иерархии дерева. Для двоичных или бинарных деревьев выделяют следующие виды рекурсивного обхода всех его элементов (в фигурных скобках указан порядок посещения элементов каждого узла, начиная с корня):

    • прямой или префиксный
      {узел, левое поддерево, правое поддерево};

    • обратный или постфиксный
      {левое поддерево, правое поддерево, узел};

    • симметричный или инфиксный
      {левое поддерево, узел, правое поддерево};

    Чтобы вывести элементы в порядке их возрастания, дерево поиска следует обойти в симметричном порядке. Чтобы элементы оказались в обратном порядке, в процессе обхода необходимо поменять порядок посещения поддеревьев.


    Двоичное (бинарное) дерево.

    Иерархический список – симбиоз линейного списка и дерева. Каждый элемент списка может быть также началом списка следующего подуровня иерархии. Пример иерархического списка – структура интернет форумов: последовательность сообщений образует линейный список, в то время как сообщения, являющиеся ответами на другие сообщения, порождают новые потоки обсуждения.


    Иерархический список.

    Сетевые структуры данных

    Элемент в сетевой структуре данных характеризуется набором связей с другими - соседними элементами. В таких структурах данных ни начальный, ни корневой элементы явно не выделены.

    Граф – динамическая сетевая структура данных, представленная набором вершин и ребер – связей между вершинами. Каждая вершина может быть связана с любым числом других вершин или с самой собой. Здесь уже нет никакой четкой иерархии. Если рассматривать узлы дерева, как вершины графа, а связи между узлами дерева разных уровней иерархии, как ребра графа, то само дерево можно считать графом, не содержащим циклов или ациклическим графом. Если для каждого ребра графа определено направление, то это ориентированный граф. Помимо направления каждое ребро графа может иметь свой вес. С помощью графа, например, моделируются транспортные сети и решаются задачи на оптимизацию транспортных потоков. Загруженность или, наоборот, пропускная способность транспортных магистралей задается весом соответствующих ребер.


    Граф.

    Ориентированный граф.

    Элемент в табличной структуре данных характеризуется двумерным индексом: индексом строки и индексом столбца, на пересечении которых он находится. Примерами табличных структур данных являются и таблицы .


    Оценка сложности алгоритмов

    Под оценкой сложности алгоритмов подразумевают не интеллектуальные усилия, которые затратили авторы при их разработке, а зависимость количества элементарных операций, выполняемых вычислительной машиной от объема обрабатываемой информации. Например, как будет зависеть число сравнений двух чисел от длины исходной последовательности в процессе работы алгоритма сортировки. Я намеренно немного сузил определение, поскольку в дальнейшем речь будет идти только о количестве элементарных операций. На самом деле сложность алгоритма определяется не только количеством операций, но и объемом привлеченных для решения задачи вычислительных ресурсов, и в первую очередь, оперативной памяти. Чем проще алгоритм, тем он, скорее всего, дольше работает. Сложные и быстрые алгоритмы зачастую используют вспомогательные структуры данных, и, как следствие, расходуют дополнительную память. Закон сохранения энергии или “за все надо платить”. Один из примеров “предельной оптимизации” был рассмотрен ранее – это хэш-таблица. Я лично не знаю, как устроена хэш-таблица и как выглядят хэш-функции (догадываюсь, что не просто), но зато время поиска элементов по ключу практически не зависит от размера таблицы. Далее немного теории.

    Оценку сложности алгоритмов проводят с использованием аппарата математического асимптотического анализа и выведения асимптотической оценки сложности.

    Асимптотическая оценка сложности обозначается греческой буквой Θ (тета).

    f(n) = Θ(g(n)), если существуют c1, c2>0 и n0 такие, что c1*g(n)n0.

    Функция g(n) является асимптотически точной оценкой сложности алгоритма - функции f(n), приведенное неравенство называется асимптотическим равенством, а само обозначение Θ символизирует множество функций, которые растут “так же быстро”, как и функция g(n) – т.е. с точностью до умножения на константу. Как следует из приведенного неравенства, оценка Θ являет собой одновременно и верхнюю и нижнюю оценки сложности. Не всегда есть возможность получить оценку в таком виде, поэтому верхнюю и нижнюю оценки иногда определяют отдельно.

    Верхняя оценка сложности обозначается греческой буквой Ο (омикрон), и является множеством функций, которые растут не быстрее, чем g(n).

    f(n)= Ο(g(n)), если существует c>0 и n0 такие, что 0n0.

    Нижняя оценка сложности обозначается греческой буквой Ω (омега), и является множеством функций, которые растут не медленнее, чем g(n).

    f(n)= Ω(g(n)), если существует c>0 и n0 такие, что 0n0.

    Как следствие: асимптотическая оценка существует только в том случае, если совпадают нижняя и верхняя оценки сложности алгоритма. В практике анализа алгоритмов чаще всего под оценкой сложности понимают верхнюю оценку сложности. Это вполне логично, поскольку наиболее важна оценка времени, за которое алгоритм гарантировано закончит работу, а не время, в пределах которого он точно не завершится.

    Работа с линейными структурами данных

    Ну и в заключении я приведу оценки сложности основных операций с линейными структурами данных, а именно добавление, удаление и поиск элемента по индексу или ключу. Элементарными операциями, в данном случае, являются операции сравнения, перебора, вычисления адреса или перестановки элементов набора структуры данных. В сводной таблице, помимо верхней оценки сложности, также приведены соответствующие перечисленным структурам данных компоненты библиотеки . Таким образом, основные линейные структуры данных уже есть в готовом виде и доступны всем разработчикам программного обеспечения на платформе .

    Аннотация: Дается общее понятие структуры данных как исполнителя, который организует работу с данными: хранение, добавление и удаление, поиск и т.п. Рассматриваются реализации одних структур на базе других, в частности, реализации на базе массива. Приводятся наиболее важные из простейших структур данных: очередь и стек, а также их непрерывные реализации на базе массива. Даются многочисленные примеры использования стека в программировании. Рассматривается обратная польская запись формулы (знак операции после аргументов) и способ ее вычисления на стековой машине. В качестве примера использования обратной польской записи рассматривается графический язык PostScript. Материал иллюстрируется проектом "Cтековый калькулятор", реализованным на языке Си.

    Структуры данных

    "Алгоритмы + структуры данных = программы". Это - название книги Никлауса Вирта, знаменитого швейцарского специалиста по программированию, автора языков Паскаль , Модула-2, Оберон. С именем Вирта связано развитие структурного подхода к программированию. Н.Вирт известен также как блестящий педагог и автор классических учебников.

    Обе составляющие программы, выделенные Н.Виртом, в равной степени важны. Не только несовершенный алгоритм , но и неудачная организация работы с данными может привести к замедлению работы программы в десятки, а иногда и в миллионы раз. С другой стороны, владение теорией программирования и умение систематически применять ее на практике позволяет быстро разрабатывать эффективные и в то же время эстетически красивые программы.

    Общее понятие структуры данных

    Структура данных - это исполнитель , который организует работу с данными, включая их хранение, добавление и удаление, модификацию, поиск и т.д. Структура данных поддерживает определенный порядок доступа к ним. Структуру данных можно рассматривать как своего рода склад или библиотеку. При описании структуры данных нужно перечислить набор действий, которые возможны для нее, и четко описать результат каждого действия. Будем называть такие действия предписаниями . С программной точки зрения, системе предписаний структуры данных соответствует набор функций, которые работают над общими переменными.

    Структуры данных удобнее всего реализовывать в объектно-ориентированных языках. В них структуре данных соответствует класс , сами данные хранятся в переменных-членах класса (или доступ к данным осуществляется через переменные-члены), системе предписаний соответствует набор методов класса. Как правило, в объектно-ориентированных языках структуры данных реализуются в виде библиотеки стандартных классов: это так называемые контейнерные классы языка C++, входящие в стандартную библиотеку классов STL , или классы, реализующие различные структуры данных из библиотеки Java Developer Kit языка Java .

    Тем не менее, структуры данных столь же успешно можно реализовывать и в традиционных языках программирования, таких как Фортран или Си . При этом следует придерживаться объектно-ориентированного стиля программирования: четко выделить набор функций, которые осуществляют работу со структурой данных, и ограничить доступ к данным только этим набором функций. Сами данные реализуются как статические (не глобальные) переменные. При программировании на языке Си структуре данных соответствуют два файла с исходными текстами:

    1. заголовочный, или h-файл, который описывает интерфейс структуры данных, т.е. набор прототипов функций, соответствующий системе предписаний структуры данных;
    2. файл реализации, или Си-файл, в котором определяются статические переменные, осуществляющие хранение и доступ к данным, а также реализуются функции, соответствующие системе предписаний структуры данных

    Структура данных обычно реализуется на основе более простой базовой структуры , ранее уже реализованной, или на основе массива и набора простых переменных. Следует четко различать описание структуры данных с логической точки зрения и описание ее реализации. Различных реализаций может быть много, с логической же точки зрения (т.е. с точки зрения внешнего пользователя) все они эквивалентны и различаются, возможно, лишь скоростью выполнения предписаний.

    Экзамен Информатика

    Информация как ресурс. Способы хранения и обработки информации.

    Информация от лат. «Information» означает разъяснение, осведомление, изложение.

    В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.
    Информация – это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, кот-е уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

    Информатика рассматривает информацию как концептуально связанные между собой сведения, данные, понятия, изменяющие наши представления о явлении или объекте окружающего мира.

    Информационные ресурсы это отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках).
    Чтобы информация могла использоваться, причем многократно, необходимо ее хранить.

    Хранение информации – это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.
    Обработка информации – это преобразование информации из одного вида в другой.
    Обработка информации – сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку - исполнитель обработки.
    1-ый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний.
    2-ой тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например,
    перевод текста с одного языка на другой).

    Важный вид обработки - кодирование – преобразование информации в символьную форму,
    удобную для ее хранения, передачи, обработки. Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).
    Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу).



    Понятие структурированных данных. Определение и назначение базы данных.

    Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро извлекать выборку с произвольным сочетанием признаком. Сделать это возможно, только если данные структурированы.

    Структурирование - это введение соглашений о способах представления данных.

    Структурированные данные - это упорядоченные данные.

    Неструктурированные данные – это данные, записанные, например, в текстовом файле: Личное дело № 1 Сидоров Олег Иванович, дата рожд. 14.11.92, Личное дело № 2 Петрова Анна Викторовна, дата рожд. 15.03.91.

    Чтобы автоматизировать поиск и систематизировать эти данные, необходимо выработать определенные соглашения о способах предоставления данных, т.е. дату рожд. нужно записывать одинаково для каждого студента, она должна иметь одинаковую длину и опред. место среди остальной информации. Эти же замечания справедливы и для остальных данных (№ личного дела, Ф., И., О.) После проведения несложной структуризации с информацией, она будет выглядеть так:

    Пример структурированных данных: № Ф. И. О. Дата рожд.

    1 Сидоров Олег Иванович 14.11.92

    Элементы структурированных данных:

    1) А – поле (столбец) – это элементарная неделимая единица организации информации

    2) Б – запись (строка) – это совокупность логически связанных полей

    3) В – таблица (файл) – это совокупность экземпляров записей одной структуры.

    База данных – это организованная на машинном носителе совокупность взаимосвязанных структурированных данных, содержащая сведения о различных сущностях некоторой предметной области (объектах, процессах, событиях, явлениях).

    В широком смысле слова база данных – это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области.

    Под предметной областью понимается часть реального мира, подлежащая изучению для организации управления, автоматизации, например, предприятии, ВУЗ и т.д.

    Назначение базы данных:

    1)Контроль за избыточностью данных. Как уже говорилось, традиционные файловые системы неэкономно рас­ходуют внешнюю память, сохраняя одни и те же данные в нескольких файлах. При использовании базы данных, наоборот, предпринимается попытка исключить избыточность данных за счет интеграции файлов, чтобы избежать хранения нескольких копий одного и того же эле­мента информации.

    2)Непротиворечивость данных. Устранение избыточности данных или контроль над ней позволяет сократить риск возникновения противоречивых состояний. Если элемент данных хранится в базе только в одном экземпляре, то для изменения его значения потребуется выполнить только одну операцию обновления, причем новое значение станет доступным сразу всем пользователям базы данных. А если этот элемент данных с ведома системы хранится в базе данных в нескольких экземплярах, то такая система сможет следить за тем, чтобы копии не противоречили друг другу.

    3)Совместное использование данных. Файлы обычно принадлежат отдельным лицам или целым отделам, которые используют их в своей работе. В то же время база данных принадлежит всей организации в целом и может совместно использоваться всеми зарегистрированными пользователями. При такой организации работы большее количество пользователей может работать с большим объемом данных. Более того, при этом можно создавать новые приложения на основе уже существующей в базе данных информации и добавлять в нее только те данные, которые в настоящий момент еще не хранятся в ней, а не определять заново требования ко всем данным, необходимым новому приложению.

    4)Поддержка целостности данных. Целостность базы данных означает корректность и непротиворечивость хранимых в ней данных. Целостность обычно описывается с помощью ограничений, т.е. правил под­держки непротиворечивости, которые не должны нарушаться в базе данных. Ограничения можно применять к элементам данных внутри одной записи или к связям между записями. Например, ограничение целостности может гласить, что зарплата сотрудника не должна превышать 40 000 рублей в год или же что в записи с данными о сотруднике номер отделения, в котором он работает, должен соответствовать реально существующему отделению компании.

    5)Повышенная безопасность. Безопасность базы данных заключается в защите базы данных от несанкционированного доступа со стороны пользователей. Без привлечения соответствующих мер безопасности интегрированные данные становятся более уязвимыми, чем данные в файловой системе. Однако интеграция позволяет определить требуемую систему безопасности базы данных, а СУБД привести ее в действие. Система обеспечения безопасности может быть выражена в форме учетных имен и паролей для идентификации пользователей, которые зарегистрированы в этой базе данных. Доступ к данным со стороны зарегистрированного пользователя может быть ограничен только некоторыми операциями (извлечением, вставкой, обновлением и удалением).

    ТИПЫ И СТРУКТУРЫ ДАННЫХ

    Методические указания по дисциплине «Алгоритмы и структуры данных»

    Составитель О.Л. Чагаева

    Подготовлены кафедрой «Программные средства и системы» ФУО УрФУ

    Введение

    В окружающем нас мире находится огромное разнообразие предметов, объектов, явлений, процессов, отображаемых посредством информации.

    Каждая представляемая информацией сущность (объект, явление) имеет ряд характерных для нее свойств (черт, признаков, параметров, характеристик, моментов). Например, свойствами материала являются его вес, габариты, сорт, цена, номенклатурный номер и др. Свойствами-признаками, характеризующими такую сущность, как организация-покупатель, являются наименование, ведомственная принадлежность, адрес, номер расчетного счета в Госбанке и др.

    Свойства физической сущности отображаются с помощью переменных величин, являющихся элементарными единицами информации и называемых реквизитами.

    Реквизит - это логически неделимый элемент любой сложной информационной совокупности, соотносимый с определенным свойством отображаемого информацией объекта или процесса.

    В обрабатываемой информации реквизиты представляются как бы «атомами», из которых компонуются все остальные, более сложные по структуре образования информации. И наоборот, единицы информации любой сложности можно последовательным разложением на составляющие компоненты в конечном итоге расчленить до таких составляющих - переменных величин, которые не поддаются дальнейшему логическому разбиению. Такие элементарные компоненты и будут реквизитами.

    Другими часто встречающимися в литературе синонимами реквизита являются элемент, поле, терм, признак иатрибут .

    У каждого реквизита есть имя. При алгоритмизации и программировании с целью компактного написания чаще всего применяют сокращенные имена-идентификаторы, причем конкретные реализации обычно ограничивают их длину, алфавит и сферу действия. В ряде случаев допускается также употребление синонимов наименований реквизита, в том числе таких полных наименований, которые используются только во внешних документах, например, в качестве заголовков граф отчетов.

    Каждому реквизиту присуще некоторое конечное множество значений в зависимости от характеристики того свойства объекта (явления), которое информационно отображает данный реквизит. Это множество, именуемое классом значений, одно, например, для параметра «температура больного» и другое - для признака «пол больного».

    Значение реквизита, таким образом, есть в каждый заданный момент времени одна из позиций класса значений данного реквизита, отображающая, как предполагается, соответствующее состояние (из множества состояний) того свойства объекта (явления), которое характеризует реквизит. Так, текущим значением реквизита «температура больного» может быть 37,4°, а реквизита «пол больного» - «мужской». Другими словами, значение реквизита используется для представления значения соответствующего свойства сущности.

    Существует ряд типов реквизитов в зависимости от видов значений, которые они могут иметь. Наиболее распространенными типами реквизитов, однако, являются числовой и текстовой .

    Реквизиты числового типа характеризуют количественные свойства сущностей, полученные в результате подсчета натуральных единиц, измерения, взвешивания, вычисления на основе других количественно-суммовых данных и т. п. Поэтому значениями таких реквизитов служат числа со всеми свойственными им чертами и атрибутами.

    В конкретных представлениях фигурирует несколько типов числовых величин в зависимости от класса чисел, системы счисления, фиксации десятичной запятой, упаковки и других; накладываются ограничения на диапазон чисел, форматы их представления на вводевыводе и различных носителях даже в рамках одной реализации. Поскольку все реквизиты числового типа активно используются в различных арифметических операциях, а большинство из них вообще создается в результате осуществления таких операций, указанные отличия и ограничения следует постоянно иметь в виду, так же как и необходимость соответствующего аппарата преобразования.

    Реквизиты текстового типа выражают, как правило, качественные свойства сущностей и характеризуют обстоятельства, при которых имел место изучаемый процесс и были получены те или

    иные числовые значения. Поэтому такие реквизиты называются признаками.

    Значениями признаков являются последовательности символов (букв, цифр, различных знаков и специальных обозначений), называемые строками, или текстом.

    Полный набор всевозможных попарно различимых символов данной информационной системы составляет ее алфавит, зависящий от характера задач, применяемых технических средств обработки данных и других факторов. Причем на различных стадиях обработки и даже в рамках одной вычислительной системы возможно применение различных алфавитов.

    Размер алфавита (число разнообразных символов, которые могут быть в одном разряде величины) и его состав (набор) имеют прямое отношение к решению следующих проблем:

    кодирования и дешифровки,

    компактной записи значений единиц информации,

    эффективного хранения данных, ускорения их поиска, передачи, ввода в вычислительные машины,

    получения от машин информации в наиболее удобной для потребления форме,

    снижения затрат на всевозможные перезаписи.

    Поэтому выбору алфавита придается немаловажное значение.

    Для использования информации, в алгоритмизации и программировании очень большое значение уделяется таким понятиям, как тип и структура данного.

    1. ТИПЫ ДАННЫХ

    Вычислительный процесс на ЭВМ реализуется, как известно, с помощью программ и данных. Сама программа тоже относится к данным. Поэтому можно сказать, что данные описывают любую информацию, с которой может работать ЭВМ. При этом под информацией понимаются любые факты и знания об объектах реального мира, процессах и отношениях и связях между ними. Все данные характеризуются рядом атрибутов (признаков, реквизитов), в том числе значением.

    Кроме значения, к таким признакам относится понятие «тип данного». Тип данного определяется множеством значений данного и набором операций, которые можно выполнять над этими значениями в соответствии с их известными свойствами. Следовательно, тип данного определяет те операции, которые допустимы над соответствующим значением.

    В языках программирования обычно используются такие распространенные типы данных, как целые, вещественные, символьные, битовые, указатели и пр.

    2. СТРУКТУРЫ ДАННЫХ

    Особенностью данного того или иного типа является простота организации (неструктурированность).

    Структура данных – это совокупность элементов данных, между которыми существуют некоторые отношения, причем элементами данных могут быть как простые данные (скаляры), так и структуры данных.

    Таким образом, структуру можно определить следующим образом: S = (D, R), где D - множество элементов данных, R – множество отношений между элементами данных.

    Все связи одного элемента данных с другими образуют элемент отношений, ассоциированный с соответствующим элементом данных.

    Графическое изображение структуры должно отражать ее элементы данных и связи (отношения между ними), поэтому структуру удобно изображать в виде графа. При этом вершины графа можно интерпретировать как элементы данных, а отношениям между элементами данных соответствуют ориентированные дуги или неориентированное ребра (рис. 1).

    Таким образом описанную и представленную структуру данных называют абстрактной или логической, так как она рассматривается без учета ее представления в машинной памяти. Но любая структура данных должна быть представлена в машинной памяти. Такая структура данных называется физической структурой, структурой хранения, внутренней структурой или структурой памяти.

    Рис 1. Неориентированный (а) и ориентированный (б) граф

    Таким образом, физическая структура данных отражает способ представления данных в машинной памяти.

    В общем случае между логической и соответствующей ей физической структурой существует различие, степень которого зависит от самой структуры и особенностей той физической среды, в которой она должна быть отражена.

    Например, с точки зрения языков программирования двумерный массив представляет собой прямоугольную таблицу, а в памяти – это линейная последовательность ячеек, в каждой из которых хранится значение одного из элементов массива, причем элементы массива упорядочены по строкам (или столбцам).

    Разумеется, между логической и физической структурой должен существовать механизм, позволяющий отобразить логическую структуру в физическую.

    Таким образом, каждую структуру данных можно характеризовать ее логическим (абстрактным) и физическим (конкретным) представлением, а также совокупностью операций на этих двух уровнях представления структуры (рис. 2).

    Операции над логической структурой

    Логическая структура данных

    Операции над физической структурой

    Физическая структура данных

    Рис. 2. Отображение между логическим и физическим представлением структуры данных

    2.1. Классификация структур данных

    В зависимости от отсутствия или наличия явно заданных связей между элементами данных следует различать несвязанные структуры (векторы, массивы, строки, стеки, очереди) и связные структуры (связные списки).

    Важные признак структуры – ее изменчивость – изменение числа элементов и/или связей между элементами структуры. Значение элемента данных не имеется в виду, так как в этом случае это свойство было бы характерно для всех структур данных за исключением, может быть, констант и данных, хранящихся в ПЗУ. По признаку изменчивости различают статические, полустатические и динамические структуры.

    Важный признак структуры данных – характер упорядоченности ее элементов. По этому признаку структуры можно делить на линейно-упорядоченные, или линейные, и нелинейные.

    В зависимости от характера взаимного расположения элементов в памяти линейные структуры можно разделить на структуры с последовательным распределением их элементов в памяти (векторы, строки, массивы, стеки, очереди) и структуры с произвольным связным распределением элементов в памяти (односвязные, двусвязные, циклически связанные, ассоциативные списки). Примером нелинейных структур являются многосвязные списки, древовидные структуры и графовые структуры общего вида.

    2.2. Простейшие статические структуры

    К простейшим структурам данных обычно относят векторы, массивы, записи, таблицы. Они характеризуются следующими свойствами:

    постоянство структуры в течение всего времени ее существования;

    смежность элементов и непрерывность области памяти, отводимой сразу для всех элементов структуры;простота и постоянство отношений между элементами

    структуры, позволяющие исключить информацию об этих отношениях из области памяти, выделенной для элементов структуры, и хранить ее, например, в компактной форме в дескрипторах.

    В силу этих свойств векторы, массивы, записи и таблицы принято считать статическими структурами.

    2.2.1. Вектор

    Вектор – это конечное упорядоченное множество простых данных или скаляров, одного и того же типа. С геометрической точки зрения вектор задает точку в многомерном пространстве, координатами которой служат значения элементов вектора.

    Элементы вектора находятся друг с другом в единственно возможном отношении – отношении непосредственного следования. Строгая последовательность элементов вектора позволяет

    пронумеровать их последовательными целыми числами – индексами. Логическая структура вектора полностью описывается числом и типом его элементов. Например, int array – целочисленный массив, состоящий из 10 элементов.

    Важнейшая операция над вектором – доступ к его элементам. Как только организован доступ к элементу, над ним может быть выполнена любая операция, имеющая смысл для выбранного типа данных.

    На логическом уровне для доступа к элементу вектора достаточно указать имя вектора и значение индекса соответствующего элемента. Например: array + array.

    Физическая структура вектора – это последовательность одинаковых по длине участков памяти, называемых полями или слотами, каждый из которых предназначен для хранения одного элемента вектора. Поле может иметь размер минимально адресуемой ячейки памяти или соответствовать целой группе последовательных ячеек памяти.

    Нередко физической структуре ставится в соответствие дескриптор или заголовок, который содержит информацию о данной физической структуре. Дескриптор необходим, например, в том случае, когда граничные размеры вектора становятся известны только на этапе выполнения программы.

    Дескриптор тоже хранится в машинной памяти и представляет собой структуру, называемую записью. Для вектора дескриптор обычно хранит его имя, размер, значения граничных индексов, тип элемента, размер поля или слота, адрес первого элемента вектора (поля, хранящего этот элемент).

    2.2.2. Массив

    Массивом называется такой вектор, каждый элемент которого - вектор. В свою очередь, элементы вектора, являющегося элементом массива, также могут быть векторами. Процесс перехода от элемента к элементу этого элемента и так далее рано или поздно должен завершиться скаляром некоторого типа данных, причем этому типу должны соответствовать все скалярные элементы массива (рис. 3).

    Рис. 3. Вид многомерного массива

    На рис.3 представлен вид многомерного массива: в каждом узле решетки находится элемент массива. Таким образом, размерность его равна (3,3,2).

    Как и для вектора, важнейшей элементарной операцией для массива является доступ к его элементу. На уровне логической структуры она осуществляется при помощи имени массива и упорядоченного набора индексов, однозначно идентифицирующих элемент массива. Например: array[i][j].

    В отличие от вектора, для массива общего вида преобразование логической структуры в физическую имеет более сложный вид. Это преобразование выполняется путем процесса линеаризации, в ходе которого многомерная логическая структура массива отображается в одномерную физическую структуру. Эта физическая структура представляет собой линейно упорядоченную последовательность элементов массива. Таким образом, физическая структура многомерного массива аналогична физической структуре вектора.

    Несмотря на это, дескриптор многомерного массива отличается от дескриптора вектора. Например, в нем должна хранится информация о размерности массива, способе упорядочения элементов (по строкам или столбцам).

    2.2.3. Запись

    Запись – это конечное упорядоченное множество элементов, содержащее в общем случае данные различных типов.

    Элементы записи часто называют полями. Запись – это обобщенное понятие вектора, при котором не требуется однотипность или

    Понятие модели данных

    Модели данных

    Модель данных является инструментом моделирования произвольной предметной области.

    Модель данных – это совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения . Итак, модель данных состоит из трёх частей:

    1. Набор типов структур данных.

    Здесь можно провести аналогию с языками программирования, в которых тоже есть предопределённые типы структур данных, такие как скалярные данные, вектора, массивы, структуры (например, тип struct в языке Си) и т.д.

    1. Набор операторов или правил вывода, которые могут быть применены к любым правильным примерам типов данных, перечисленных в (1), чтобы находить, выводить или преобразовывать информацию, содержащуюся в любых частях этих структур в любых комбинациях.

    Такими операциями являются: создание и модификация структур данных, внесение новых данных, удаление и модификация существующих данных, поиск данных по различным условиям.

    1. Набор общих правил целостности, которые прямо или косвенно определяют множество непротиворечивых состояний базы данных и/или множество изменений её состояния.

    Правила целостности определяются типом данных и предметной областью. Например, значение атрибута Счётчик является целым числом, т.е. может состоять только из цифр. А ограничения предметной области таковы, что это число не может быть меньше нуля.

    Теперь рассмотрим подробнее наборы, составляющие модель данных.

    Структуризация данных базируется на использовании концепций "агрегации" и "обобщения". Один из первых вариантов структуризации данных был предложен Ассоциацией по языкам обработки данных (Conference on Data Systems Languages, CODASYL) (рис. 2.1).

    Рис.2.1 Композиция структур данных по версии CODASYL

    Элемент данных – наименьшая поименованная единица данных, к которой СУБД может обращаться непосредственно и с помощью которой выполняется построение всех остальных структур. Для каждого элемента данных должен быть определён его тип.

    Агрегат данных – поименованная совокупность элементов данных внутри записи, которую можно рассматривать как единое целое. Агрегат может быть простым (включающим только элементы данных, рис. 2.2,а) и составным (включающим наряду с элементами данных и другие агрегаты, рис. 2.2,б).

    Рис.2.2 Примеры агрегатов: а) простой и б) составной агрегат

    Запись – поименованная совокупность элементов данных или эле-ментов данных и агрегатов. Запись – это агрегат, не входящий в состав никакого другого агрегата; она может иметь сложную иерархическую структуру, поскольку допускается многократное применение агрегации. Различают тип записи (её структуру) и экземпляр записи, т.е. запись с конкретными значениями элементов данных. Одна запись описывает свойства одной сущности ПО (экземпляра). Иногда термин "запись" за-меняют термином "группа".


    Пример записи, содержащей сведения о сотруднике, приведён на рис. 2.3.

    Рис.2.3 Пример записи типа СОТРУДНИК

    Эта запись имеет несколько элементов данных (Номер пропуска, Должность, Пол и т.д.) и три агрегата: простые агрегаты ФИО и Адрес и повторяющийся агрегат Телефоны . (Повторяющийся агрегат может включаться в запись произвольное число раз).

    Среди элементов данных (полей записи) выделяются одно или несколько ключевых полей . Значения ключевых полей позволяют классифицировать сущность, к которой относится конкретная запись. Ключи с уникальными значениями называются потенциальными . Каждый ключ может представлять собой агрегат данных. Один из ключей назначается первичным, остальные являются вторичными. Первичный ключ идентифицирует экземпляр записи, его значение должно быть уникальным и обязательным для записей одного типа. Для примера на рис. 2.3 потенциальными ключами являются поля № пропуска и Паспорт , а первичным ключом целесообразнее выбрать поле № пропуска , т.к. оно явно занимает меньше памяти, чем паспортные данные.

    Набор (или групповое отношение ) – поименованная совокупность записей, образующих двухуровневую иерархическую структуру. Каждый тип набора представляет собой связь между двумя или несколькими типами записей. Для каждого типа набора один тип записи объявляется владельцем набора, остальные типы записи объявляются членами набора. Каждый экземпляр набора должен содержать только один экземпляр записи типа владельца и столько экземпляров записей типа членов набора, сколько их связано с владельцем. Для группового отношения также различают тип и экземпляр.

    Групповые отношения удобно изображать с помощью диаграммы Бахмана, которая названа так по имени одного из разработчиков сетевой модели данных. Диаграмма Бахмана – это ориентированный граф, вершины которого соответствуют группам (типам записей), а дуги – групповым отношениям (рис. 2.4).

    Рис. 2.4 Пример диаграммы Бахмана для фрагмента БД "Город"

    Здесь запись типа ПОЛИКЛИНИКА является владельцем записей типа ЖИТЕЛЬ диспансеризация . Запись типа ОРГАНИЗАЦИЯ также является владельцем записей типа ЖИТЕЛЬ и они связаны групповым отношением работают . Записи типа РЭУ и типа ЖИТЕЛЬ являются владельцами записей типа КВАРТИРА с отношениями соответственно обслуживают и проживают . Таким образом, запись одного и того же типа может быть членом одного отношения и владельцем другого.

    База данных – поименованная совокупность экземпляров групп и групповых отношений. Это самый высокий уровень структуризации данных.

    Примечание : структуризация данных по версии CODASYL используется в сетевой и иерар-хической моделях данных. В реляционной модели принята другая структуризация данных, основанная на теории множеств.