Максимальная температура процессора ноутбука i7. Нормальная рабочая температура процессоров разных производителей

Всем привет Если у вас есть процессор Intel Core i7 6700K, то я просто за вас рад, ибо это крутой проц вообще на сегодняшний день и я могу даже назвать что лучший проц в плане цены и производительности на 2016-тый год, да и наверно на 2017-тый тоже. Тем более что он сделан под 1151-тый сокет, то есть под самый современный сокет. Короче крутой проц и все. Очень жаль, но что будет делать дальше AMD, я не знаю, может пора им уже кинуть какую-то бомбу, ну например 16-ти ядерный проц по доступной цене? Ну, это не мое дело, сегодня у нас такая тема как температура проца i7 6700K, вот какой она должна быть?

Значит модель i7 6700K, это не просто проц, а с буквой K, а это означает то, что он имеет разблокированный множитель, то есть этот проц можно разгонять. А если можно разгонять, то при его работе температура будет повышенной, особенно на максимальных нагрузках, ну я имею ввиду если он будет разогнанный. Это нужно учитывать, даже не то что бы нужно, это просто обязательно нужно помнить, если вы не хотите неприятностей

Вот смотрите, вот вам скриншот проги CPU-Z, тут видно как i7 6700K разогнан до 4.6 ГГц:


Итак, теперь собственно по делу, какая температура нормальная для этого проца? Грубо говоря, не выше 70-ти градусов. Если вы играете в какую-то игру или работаете в тяжелой проге какой-то, то температура может быть 60-70 градусов, и то, я лично не считаю что это хорошо. Лучше чтобы она была меньше. Покупая проц с буквой K нужно заранее думать об охлаждении, чтобы потом не было приколов.

Если вы сидите в интернете, смотрите кино, слушаете музыку, ну то есть особо ничего сложного не делаете за компом, то температура i7 6700K не должна быть выше 40 градусов. Если особо комп не грузите, а температура где-то 44-50 градусов, это означает что что-то мешает охлаждению проца. Тут могут быть всякие причины, ну например радиатор плохой, или наоборот, хороший большой радиатор, но вот с процом нет плотного контакта, поэтому температура большая даже без нагрузки. Тут нужно разбирать комп, снимать радиатор и внимание, нужно смотреть на термопасту, там будет след от контакта, по нему можно понять плотно ли пристает подошва радиатора к процу или нет.

У меня вот лично стоит такой радиатор, это Zalman CNPS10X Optima, вот он:


А вот его подошва, видите, тут медные трубки проходят, главное чтобы эти трубки плотно приставали к теплораспределительной крышке проца:


Я даже снял с радиатора вентилятор, чтобы было меньше шума. В итоге температура все равно не поднимается никогда выше 40 градусов.

Максимальная температура i7 6700K может быть и 80 градусов и выше, но это очень и очень нежелательно! При такой температуре внутри компа все нагревается, ну что значит все, я имею ввиду что нагревается воздух, и всем устройствам становится жарче. Особенно высокой температуры не любит жесткий диск, а про видюху я вообще молчу, если она игровая, то она вообще может больше потреблять энергии чем проц ну и греться понятное дело что тоже больше.. Учтите это

Итак, еще раз, ребята. Какая температура должна быть у i7 6700K? Вне зависимости от разгона, температура должна быть такая: при простое и легкой нагрузке, должна быть не выше 40 градусов, при средней нагрузке не выше 50, при максимальной нагрузке не выше 65, может быть и больше, но лично мое мнение что температура выше 70-ти градусов это плохо. Дело в том, что держать температуру в норме это в принципе не так уж и сложно, нужно просто чтобы был нормальный радиатор и плотный контакт его подошвы с процом, вот и весь секрет

Если вам нужно посмотреть температуру проца, а вы не знаете как, то ничего страшного, я вам сейчас дам две проги, это лучшие проги для такого дела. Первая это AIDA64, показывает и температуру устройств и всевозможную инфу о железе, писал о ней я . Вторая прога тоже хорошая, имеет более спокойный интерфейс и полностью бесплатная, прогу зовут Speccy о ней я писал вот . Так что если что, можете глянуть!

Ну что ребята, на этом уже все, надеюсь что вам тут все было понятно, ну а если что-то не так, то вы уж извините. Удачи вам в жизни и чтобы все у вас было хорошо

25.12.2016

Часто владельцы ноутбуков производят проверку его температуры. Это делается для того, чтобы определить температуру в различных режимах работы и сопоставить ее с нормальной. Если температура будет превышать рекомендуемые показатели, то владельцу ноутбука следует ее понизить, так как это может привести к его поломке.

Чтобы у пользователей температура процессора ноутбука соответствовала оптимальным критериям его работы, мы подготовили материал, в котором опишем процесс решения поставленной задачи. Для описания решения задачи мы рассмотрим несколько современных ноутбуков и выясним, какая температура процессора для них оптимальна, а также выясним, что делать при ее повышении.

Рабочая температура CPU в современных ноутбуках

В этом разделе мы опишем, какая допустимая рабочая температура CPU должна быть в четырех современных моделях ноутбуков. Для примера мы возьмем такие современные модели портативных компьютеров:

  • Acer TravelMate P238-M-5575
  • Asus F555UB-XO043T (Модель с CPU Intel Core i5-6200U);
  • Gigabyte P55K v5 (Модель с CPU Intel Core i7-6700HQ и GPU NVIDIA GeForce GTX 965M);
  • Acer Aspire E5-552G (Модель с CPU AMD FX-8800P и GPU AMD Radeon R8 M365DX).

В модели Acer TravelMate P238-M-5575 установлен современный процессор Intel Core i5-6200U седьмого поколения. Эта микросхема выполнена с применением 14 nm норм литографии на архитектуре Skylake. Максимальная критическая температура этого ЦПУ составляет 100 градусов .

В Intel Core i5-6200U встроено графическое ядро Intel HD Graphics 520, которое вместе с процессорными ядрами может хорошо его прогревать. Температура Intel Core i5-6200U без сильной нагрузки еле дотягивает до 34–40 градусов . Если запустить тест стабильности на Acer TravelMate P238-M-5575 с помощью программы Prime95, то она сможет значительно его прогреть. Ниже изображено снятие тепловых показаний Intel Core i5-6200U с помощью утилиты HWMonitor.

На следующем изображении сняты показания с помощью утилиты GPU-Z.

Из полученных данных становится понятно, что максимально прогреть Intel Core i5-6200U и его графическое ядро можно в пределах 74–76 градусов . Из этого следует, что при максимальном прогреве этот CPU полностью укладывается в нормальные тепловые характеристики, так как не превышает 100 градусов.

Следующая модель Asus F555UB-XO043T базируется на аналогичном CPU Intel Core i5-6200U. Проведем аналогичный стресс тест с помощью утилиты Prime95. При стресс тесте были получены такие показания датчиков в программе HWMonitor.

Также были сняты показания с графического ядра.

Из полученных данных температура процессора составила 75–79 градусов , что практически аналогично результату модели Acer TravelMate P238-M-5575 и соответствует нормальным температурным параметрам рассматриваемого CPU.

Следующий ноутбук Gigabyte P55K v5 является игровым, поэтому кроме мощного процессора, имеет в своем комплекте современную видеокарту. В Gigabyte P55K v5 установлен процессор Intel Core i7-6700HQ и видеокарта NVIDIA GeForce GTX 965M. Если сравнить эту модель с предыдущими моделями, то можно заметить разницу, которая кроется в системе охлаждения (далее - СО) . В рассматриваемой модели СО должна справиться с охлаждением как видеокарты, так и CPU, а не как в предыдущих моделях только процессора. На изображении ниже показана СО Gigabyte P55K v5.

А на другой СО Acer TravelMate P238-M-5575.

Процессор Intel Core i7-6700HQ имеет критически допустимый уровень нагрева 100 градусов . Также как в предыдущих примерах запустим на Gigabyte P55K v5 стресс тест с помощью утилиты Prime95. В процессе теста мы измерили такие показатели в утилите HWiNFO.

А также произвели замеры в видеокарте NVIDIA GeForce GTX 965M.

В результате теста CPU прогрелся до температуры 97 градусов , а видеокарта до 81 градуса. Такой результат прогрева является довольно высоким, но все же укладывается в 100 градусов.

Для видеокарты NVIDIA GeForce GTX 965M результат в 81 градус является довольно нормальным показателем, так как ее критический показатель составляет 100 градусов. Конечно, прогрев процессора до 97 градусов великоват, но это все заслуги Prime95, которая выжимает с CPU практически все соки.

Если вы запустите такие игры, как Tom Clancy’s The Division и Far Cry Primal, которые очень требовательны к ресурсам компьютера, то вы увидите, что CPU и GPU в Gigabyte P55K v5 будут прогреваться в пределах 70–80 градусов.

Теперь настало время рассмотреть, какие температурные показатели у ноутбука Acer Aspire E5-552G на компонентах от компании AMD. Сердцем компьютера является CPU AMD FX-8800P . Установленная видеокарта имеет название AMD Radeon R8 M365DX. Интересной особенностью этой системы является то, что в AMD FX-8800P встроено графическое ядро, которое может работать в режиме Crossfire вместе с AMD Radeon R8 M365DX. То есть, благодаря такой связке, пользователь получит удвоенную графическую производительность. Процессор AMD FX-8800P имеет критический показатель температуры в 90 градусов , при которой он будет нормально функционировать. После прогрева Acer Aspire E5-552G утилитой Prime95 мы получили такие результаты нагрева.

Результаты нагрева CPU составили 54 градуса , что является нормальным результатом для AMD FX-8800P, так как он вписывается в 90 градусную отметку. Результат замера видеокарты AMD Radeon R8 M365DX составил 74 градуса , что также является нормальным результатом.

Из всех рассмотренных примеров становится понятно, что нормальная температура процессора зависит от системы охлаждения.

Для каждого ноутбука производители разрабатывают свою систему охлаждения. Из этого следует, что при одинаковых характеристиках ноутбуков от разных производителей температура процессора при нагрузке может быть различной. Поэтому, чтобы ваш будущий ноутбук обладал СО, которая в полной мере справится с охлаждением процессора, мы советуем перед покупкой читать обзоры и отзывы покупателей модели понравившегося ноутбука.

Что делать при высокой температуре процессора ноутбука

Если ваш ноутбук сильно греется и его температура в обычном режиме или при нагрузке превышает норму, это означает что:

  • Ваш ноутбук перегревается из-за накопленной пыли в системе охлаждения;
  • Термопаста вашего ноутбука высохла и ее следует заменить;
  • Для стабилизации тепловых показателей ЦПУ портативного ПК необходимо обновить BIOS;
  • Следствием постоянного нагрева ЦПУ может быть вредоносная программа.

Загрязнение системы охлаждения на портативных компьютерах является самой основной причиной перегрева процессора в ноутбуке . Из-за накопленной пыли в СО она не справляется с охлаждением. Чтобы система охлаждения нормально функционировала, ее следует почистить. При самостоятельной очистке ноута мы хотим предостеречь их владельцев. Если вы решитесь очистить ноутбук самодеятельно, не имея определенного опыта, то рискуете повредить ноутбук. В этом случае советуем обратиться к специалисту. После очистки СО вы сразу заметите результат, так как уровень шума СО и нагрев корпуса понизится .

Термопаста также является важным элементом охлаждения CPU, так как является проводником между СО и CPU. Если термопаста высыхает, то проводимость между СО и CPU падает, вследствие чего происходит нагрев. В этом случая производится замена термопасты. Так же как и с очисткой СО, мы не советуем проводить самостоятельную замену термопасты без надлежащего опыта.

Сейчас бурными темпами развивается множество криптовалют, к созданию которых разработчиков сподвиг успех Bitcoin. На заре рассвета криптовалют также развилось семейство вирусов для ее добычи. Цель этих вирусов - это использование вычислительных ресурсов CPU или GPU ноутбука для добычи криптовалюты . Если подобное вредоносное ПО попадет на ваш портативный ПК, то вы заметите, как процессор даже в режиме простоя будет полностью загружен . Чтобы не допустить этой ситуации в этом случае, мы советуем пользоваться надежным антивирусным ПО. Если же вирус попал на ноутбук, то в этом случае его можно удалить различными антивирусными средствами или полной переустановкой операционной системы.

Подводим итог

В этой статье мы рассмотрели температурные режимы CPU и GPU четырех ноутбуков от разных производителей и с разными характеристиками. Рассмотренные примеры должны предоставить нашим читателям информацию о нормальном температурном режиме как CPU, так и видеокарты.

Кроме рассмотренных примеров мы составили список советов, с помощью которых пользователь портативного компьютера сможет решить проблему с перегревом процессора и видеокарты, а также предотвратить его. Надеемся, наш материал поможет вам узнать какой нормальный температурный режим процессора вашего ноутбука должен быть и позволит вам не допустить его перегрев.

Видео по теме

Старшего представителя нового семейства Coffee Lake. С его выпуском компания Intel решительно ввела в массовый сегмент чипы с шестью вычислительными ядрами, чем сделала старшую новинку обновлённого модельного ряда крайне желанным решением для энтузиастов. Действительно, шестиядерный Core i7-8700K не только оказался намного (в среднем на 35 %) быстрее флагманского четырёхъядерного Kaby Lake, но и смог предложить лучшую производительность по сравнению с конкурирующими восьмиядерниками серии AMD Ryzen 7. Поэтому совершенно неудивительно, что прогрессивная часть компьютерного сообщества с нетерпением встречает все новости, связанные с Coffee Lake. Тем более что реальных владельцев таких процессоров совсем немного: официальные продажи Coffee Lake только начались, и их поставки в магазины пока носят эпизодический характер.

Поэтому мы решили продолжить исследование имеющегося в нашей редакции образца процессора Core i7-8700K и уделить дополнительное внимание его разгону. Причин «второго подхода к снаряду» две. Во-первых, компания Intel снабдила нас новым образцом процессора. Это значит, что, сопоставив результаты разгона двух экземпляров CPU, мы сможем получить более полную статистику частотного потенциала. Во-вторых, в рамках первоначального обзора проверка оверклокерских возможностей Coffee Lake делалась с немодифицированным процессором. Но давно известно, что значительно улучшить результаты разгона интеловских чипов можно при помощи скальпирования. Поэтому расширить старый опыт за счёт более основательного подхода к процессу оверклокинга - вполне логичный следующий шаг.

Тестовый Intel Core i7-8700K

В принципе всё, что следует знать о Core i7-8700K, мы рассказали в - никаких важных дополнительных сведений о новинке после анонса нам не открылось. Поэтому ограничимся лишь повторением её базовых спецификаций в сравнении с характеристиками его предшественника, Core i7-7700K:

Core i7-8700K Core i7-7700K
Кодовое имя Coffee Lake Kaby Lake
Технология производства, нм 14++ 14+
Ядра/потоки 6/12 4/8
Базовая частота, ГГц 3,7 4,2
Частота Turbo Boost 2.0, ГГц 4,7 4,5
L3-кеш, Мбайт 12 8
Поддержка памяти DDR4-2666 DDR4-2400
Интегрированная графика GT2: 24 EU GT2: 24 EU
Макс. частота графического ядра, ГГц 1,2 1,15
Линии PCI Express 16 16
TDP, Вт 95 91
Сокет LGA1151 v2 LGA1151 v1
Официальная цена $359 $339

Как следует из этой небольшой таблички, Core i7-8700K стал немного дороже, чем прошлый флагманский LGA1511-процессор, но зато он теперь предлагает в полтора раза больше вычислительных ядер и, что немаловажно, более высокие турбочастоты. Таким образом, Coffee Lake воплощает идеальный вариант увеличения многопоточности процессора. Добавление в этот процессор дополнительных параллельных вычислительных мощностей не обернулось ни значительным увеличением тепловыделения, ни падением производительности при одно- и двухпоточной нагрузке.

И даже больше того, реальные рабочие частоты Core i7-8700K всегда выше, чем у Core i7-7700K, без какого бы то ни было разгона. Компания Intel решила не сообщать подробности о работе технологии Turbo Boost 2.0 для процессоров поколения Coffee Lake, а зря. Дело в том, что при разной нагрузке она всегда готова вывести Core i7-8700K на более высокую частоту, чем мог обеспечить в аналогичной ситуации Kaby Lake. Наглядно это видно по следующей таблице.

Номинальная частота Максимальная частота Turbo Boost 2.0
1 ядро 2 ядра 3 ядра 4 ядра 5 ядер 6 ядер
Core i7-8700K 3,7 ГГц 4,7 ГГц 4,6 ГГц 4,4 ГГц 4,4 ГГц 4,3 ГГц 4,3 ГГц
Core i7-7700K 4,2 ГГц 4,5 ГГц 4,4 ГГц 4,4 ГГц 4,4 ГГц - -

Главное, чтобы Core i7-8700K хватало охлаждения: если его температура остаётся в приемлемых рамках, он действительно может работать на частоте 4,3 ГГц при нагрузке на все ядра без какого-либо разгона. И да, это верно даже для приложений, которые задействуют наиболее энергоёмкие инструкции AVX 2.0.

Именно поэтому разгон Core i7-8700K, который мы получили при подготовке прошлого обзора, показался не слишком результативным. Частоту процессора удалось повысить с 4,3 до 4,7 ГГц, то есть всего лишь на 9 %, - стоило ли это затраченных на эксперименты усилий?

В то же время обзоры Core i7-8700K, которые можно найти на некоторых других ресурсах, в первую очередь англоязычных, утверждают, что этот процессор легко разгоняется до 5,0 ГГц и даже выше, что совершенно не сходится с нашими выводами. Поэтому мы взяли другой экземпляр CPU и повторили тестирование.

Впрочем, никаких принципиально иных результатов замена процессора не дала. Даже без всякого разгона, в номинальном режиме, второй Core i7-8700K вновь продемонстрировал подозрительно высокий нагрев. Даже с весьма производительным воздушным кулером Noctua ND-U14S максимальные температуры Core i7-8700K под нагрузкой в LinX 0.8.0 (данная утилита основана на математической библиотеке Intel Math Kernel Library) достигали отметки в 84 градуса, при том что предельно допустимое значение температуры для ядер Coffee Lake - 100 градусов.

Напомним, прошлый побывавший в наших руках экземпляр Core i7-8700K в аналогичных условиях разогревался до 88 градусов, то есть новый процессор оказался получше, но не так чтобы кардинально. Иными словами, Core i7-8700K - весьма горячий CPU, и это - непреложный факт, который вряд ли нуждается в каких-либо дополнительных подтверждениях.

Неудивительно, что разгон такого процессора вновь оказался ограничен высокими температурами. Новый образец удалось вывести на частоту 4,8 ГГц, что на 100 МГц лучше, чем позволял прошлый экземпляр, но проверка стабильности в таком состоянии приводила к близкому к критическому разогреву процессорного кристалла. Максимальные температуры при тестировании в LinX 0.8.0 достигали 95 градусов.

Напряжение для стабильной работы на частоте 4,8 ГГц пришлось повысить до 1,3 В. Потребление процессора при таком разгоне по его собственной оценке, выросло с 135-140 Вт под максимальной нагрузкой в номинальном режиме до 165-170 Вт.

Каким образом в таких условиях некоторым обозревателям удаётся добиться работы Coffee Lake на частотах порядка 5,0 ГГц? Всё очень просто: дело в критериях стабильности. В то время как мы требуем от процессора беспроблемной работы и отсутствия троттлинга в абсолютно любых ситуациях, в том числе и при AVX/AVX2-нагрузке, многие наши коллеги не столь щепетильны и считают достаточным, чтобы разогнанный процессор проходил тесты в простых бенчмарках вроде Cinebench или wPrime, нагрузка в которых носит гораздо более щадящий характер. Более того, даже известные магазины уровня caseking .de или overclockers.co.uk , предлагающие предварительно отобранные процессоры с гарантией разгона, пользуются для проверки чипов отнюдь не современными средствами, а утилитой Prime95 старой версии 26.6 (актуальная версия Prime95 имеет номер версии 29.3), которая не поддерживает векторные инструкции AVX/AVX2.

Иными словами, оверклокинг, о котором говорим в этой статье мы, принципиально отличается тем, что он гарантированно применим в совершенно любых условиях: в играх, в ресурсоёмких приложениях и даже в специализированных тестах. Улучшить же такой «железобетонный» разгон Core i7-8700K до близких к пятигигагерцевой отметке частот возможно лишь сделав что-то для улучшения эффективности отвода выделяемого процессором тепла. И рецепт, как этого добиться, давно и хорошо известен. Помогает скальпирование и замена штатного интеловского термоинтерфейса материалом с более высокой теплопроводностью, который мог бы обеспечить более эффективный отвод тепла от разогнанного процессорного кристалла.

Скальпирование Coffee Lake

Итак, имеющийся процессор Core i7-8700K в своём исходном состоянии способен разгоняться до 4,8 ГГц с увеличением напряжения до 1,3 В. Но если говорить о его частотном потенциале и температурном режиме в более широком смысле, то свойства этого экземпляра можно обрисовать следующей температурной картой, построенной в LinX 0.8.0 с использованием кулера Noctua ND-U14S.

При напряжениях питания V CC менее 1,1 В процессор не способен поддерживать стабильность на частоте хотя бы 4,0 ГГц, а при увеличении напряжения выше 1,375 В такая частота оказывается недостижима из-за перегрева кристалла под нагрузкой. В интервале между 1,1 и 1,375 В оптимальным с точки зрения раскрытия разгонного потенциала оказывается напряжение 1,3 В, однако очевидно, что результаты разгона можно улучшить, поскольку он упирается в достижение процессором предельных температур.

Собственно, резкое снижение максимально достижимой частоты при увеличении напряжения V CC выше 1,3 В и указывает на то, что сдерживает разгон Core i7-8700K именно проблема с теплоотводом. Выделяемая полупроводниковым кристаллом тепловая энергия попросту не успевает отводиться, и это приводит к перегреву. Впрочем, это было понятно и без всяких экспериментов. Ещё в процессорах поколения Ivy Bridge компания Intel отказалась от пайки теплораспределительной крышки CPU на процессорный кристалл и стала применять в качестве термоинтерфейса между кристаллом и крышкой полимерную термопасту. Именно она из поколения в поколение выступает узким местом на пути теплового потока, не только сдерживая разгон, но и приводя к повышенным температурам процессора при нормальной эксплуатации в номинальном режиме.

Готовя к выпуску процессоры поколения Coffee Lake, компания Intel ввела в строй новую версию технологического процесса с нормами 14 нм, которая условно называется 14++ нм. Благодаря применению несколько ослабленных производственных параметров и совершенствованию профиля трёхмерных транзисторов в ней декларируется лучшее масштабирование частоты без роста энергопотребления. Так, Intel говорит об увеличении шага затворов транзисторов с 70 до 84 нм, что снижает негативное влияние токов утечки на общую стабильность полупроводникового устройства. В результате Coffee Lake должны быть способны работать на частотах, превышающих частоты Kaby Lake на 10-15 %, - так говорит теория.

Однако реальный опыт с теорией не сходится, поскольку возможность роста частоты блокируется недостаточной эффективностью применённого под процессорной крышкой теплоотвода. Попробуем избавиться от этого препятствия и заменить интеловский термоинтерфейс чем-то более эффективным.

Процесс скальпирования Core i7-8700K вряд ли нуждается в подробном описании. Конструктивно Coffee Lake не отличаются от своих предшественников: они не только используют тот же, что и раньше, процессорный разъём LGA1151, но и имеют абсолютно аналогичные размер и форму платы и теплораспределительной крышки. Не изменился и метод их сопряжения - они склеены герметиком, как и в Kaby Lake. Всё это позволяет использовать при снятии крышки с процессоров поколения Coffee Lake точно такие же подходы и приспособления, что и при скальпировании Kaby Lake.

Как показывает опыт, наиболее простой и безопасный метод - это силовой сдвиг теплораспределительной крышки с процессора в тисках или в специальном устройстве. Именно этим методом мы и воспользовались для разборки Core i7-8700K, но с одним важным дополнением. В нашем распоряжении осталось напечатанное на 3D-принтере вспомогательное приспособление для скальпирования процессора в тисках, которое мы делали для Core i7-7700K, им же мы решили воспользоваться и в этот раз.

О том, как работает это приспособление, подробно уже рассказывалось. Суть в том, что оно обеспечивает правильное распределение усилий при силовом сдвиге крышки относительно процессорной платы и предохраняет её от излома.

Сам процесс демонтажа теплораспределительной крышки вряд ли стоит описывать детально - на нашем сайте можно найти сразу по . Процессор просто вставляется в приспособление, к нему применяется усилие (надо заметить, достаточно серьёзное), и крышка оказывается оторванной от платы, к которой припаян процессорный кристалл.

В этот момент нетрудно убедиться, что Intel не отказалась от своей фирменной термопасты. Ненавистная плотная субстанция серого цвета заполняет промежуток между кристаллом и крышкой и в Core i7-8700K. То есть, даже несмотря на то, что ядер в процессоре стало больше, Intel продолжает считать, что эффективности полимерного термоинтерфейса вполне достаточно. Впрочем, ничего другого и не ожидалось. Пайка теперь не используется даже в премиальных многоядерных процессорах Intel серий Skylake-X и Skylake-SP, чего уж тогда ждать от массовых Coffee Lake.

Если очистить процессорную плату и кристалл от пасты и герметика, то можно оценить размеры кристалла Coffee Lake. Он стал больше, чем кристалл Kaby Lake, но ненамного. Площадь Coffee Lake оценивается в 150 мм 2 , в то время как у Kaby Lake эта величина примерно равнялась 126 мм 2 .

Заменять интеловскую термопасту лучше какими-то материалами на основе жидкого металла - индия или галлия. На сегодняшний день производители термоинтерфейсов предлагают богатый выбор соответствующих составов. Мы традиционно пользуемся продукцией компании Coollaboratory, но аналоги можно найти, например, в ассортименте Thermal Grizzly. Причём, судя по данным независимых тестов, жидкометаллический термоинтерфейс Thermal Grizzly Conductonaut несколько выигрывает по теплопроводности у вариантов Coollaboratory Liquid Pro и Ultra.

Тем не менее, в Core i7-8700K мы решили испытать жидкий металл Coollaboratory Liquid Ultra, который по сравнению с применяемым нами ранее в скальпированных процессорах термоинтерфейсом Coollaboratory Liquid Pro получил несколько улучшенную теплопроводность и стал более прост в использовании за счёт лучшего сцепления с поверхностями. Однако не стоит забывать о том, что перед тем, как начинать наносить жидкий металл на процессорный кристалл и крышку, поверхности необходимо тщательно очистить и обезжирить.

После нанесения нового теплопроводящего состава остаётся последнее - приклеить обратно на процессор медно-никелевую теплораспределительную крышку. Она, в отличие от внутреннего термоинтерфейса, сохранила качественное исполнение и превосходно решает возложенные на неё задачи - предохраняет от повреждений процессорный кристалл и распределяет поступающее на неё тепло по большей площади.

В том, что весь описанный процесс имеет огромный практический смысл, убедиться элементарно просто: достаточно сравнить коэффициенты теплопроводности разных термоинтерфейсных материалов. Так, коэффициент теплопроводности жидкого металла Coollaboratory Liquid Ultra - 38,4 Вт/(м∙К), в то время как теплопроводность интеловской термопасты оценивается величиной 4-5 Вт/(м∙К). Поэтому каждый раз, когда мы проделывали процедуру скальпирования, температуры CPU как в номинальном режиме, так и при разгоне заметно снижались. Давайте посмотрим, что произошло на этот раз.

Разгон скальпированного Core i7-8700K

Эффект от скальпирования Core i7-8700K виден сразу. Даже в номинальном режиме предельные температуры тут же упали на 13 градусов. То есть теперь, даже при максимальной и самой жёсткой для процессора нагрузке нагрев ядер не превышает 71 градуса.

Ещё более весомое улучшение температурного режима прослеживается при разгоне. Например, при выборе для процессора настроек частоты, которые изначально были предельными и приводили к нагреву Core i7-8700K до критических температур, теперь стал отчётливо виден доступный и нераскрытый частотный потенциал.

При выборе частоты 4,8 ГГц с напряжением 1,3 В температуры процессорных ядер не превышают 78 градусов. То есть здесь скальпирование позволило выиграть целых 17 градусов. Но что ещё важнее, оно открыло путь к дальнейшему оверклокингу.

Понемногу повышая напряжение дальше, мы смогли добиться работы тестового Core i7-8700K на частоте 5,0 ГГц. Причём речь идёт об абсолютно стабильном разгоне, в котором процессор способен проходить любые испытания, включая и тестирование в LinX 0.8.0 с задействованием AVX/AVX2-инструкций.

Для обеспечения работоспособности процессора на частоте 5,0 ГГц его напряжение пришлось повысить до 1,4 В, но температуры ядер, фиксируемые при работе c AVX-алгоритмами, не превышали 89 градусов. Иными словами, частота 5,0 ГГц для скальпированного Core i7-8700K - вполне подходящий режим, который можно без каких-либо колебаний ставить «на постоянно».

Здесь стоит отметить одну немаловажную деталь. В качестве тестовой платформы в экспериментах по разгону мы пользовались материнской платой ASUS Strix Z370-F Gaming. И несмотря на то, что на ней реализован фирменный четырёхканальный стабилизатор питания Digi+ на ШИМ-контроллере ASP1400BT с удвоителями фаз, на данный момент эта плата не может обеспечить стабильное напряжение на процессоре даже при включении максимального, седьмого уровня Load-Line Calibration. Как можно судить по данным мониторинга, под нагрузкой напряжение проседает почти на 0,1 В - до 1,312 В. Но несмотря на это, никаких претензий к стабильности работы Core i7-8700K на частоте 5,0 ГГц у нас не возникло, и в нашем случае явно дефектная реализация Load-Line Calibration на плате ASUS Strix Z370-F Gaming разгонный потенциал никак не ограничила. Тем не менее на других платах, где данная функция работает без проблем, частоту 5,0 ГГц можно было бы получить и при более низком напряжении V CC . Насколько более низком - мы обязательно проверим, как только другие платы доберутся до нашей лаборатории.

Более полно картину того, насколько значительный эффект даёт скальпирование Core i7-8700K при разгоне, можно оценить по температурной карте, составленной для этого процессора после замены термоинтерфейса. Приведённые на ней значения температур - это максимум, который был зафиксирован при прохождении тестирования в LinX 0.8.0.

Представленная таблица ясно даёт понять, что замена интеловской термопасты жидким металлом, который имеет на порядок лучшую теплопроводность, серьёзно снижает рабочие температуры и буквально отодвигает предел разгона. То есть штатный интеловский термоинтерфейс искусственно сдерживает частотные возможности кристаллов Coffee Lake в составе процессоров Core восьмого поколения, и на самом деле они способны на гораздо большее.

Правда, нужно учитывать и ещё один момент - безопасность долговременной эксплуатации разогнанного процессора. Считается, что от длительной работы при повышенных частоте и напряжении полупроводниковый кристалл может деградировать. И в этом есть доля истины: такое действительно случается. Поэтому на оверклокерских форумах для 14-нм процессоров обычно рекомендуют останавливаться на максимальных значениях напряжений порядка 1,35-1,4 В - они у оверклокеров-практиков считаются сравнительно безопасными.

Тем не менее инженеры из числа разработчиков материнских плат говорят, что эта рекомендация - не слишком корректная. Дело в том, что деградация полупроводниковой структуры процессора происходит не столько от напряжения, сколько от высоких токов, поэтому безопасный уровень напряжения питания зависит от изначального качества полупроводникового кристалла, и его нужно определять не в виде абсолютной величины, а через фактическое энергопотребление каждого конкретного экземпляра CPU при его разгоне. Общая рекомендация звучит так: повышать напряжение V CC безопасно до тех пор, пока потребление процессора под нагрузкой превышает изначальный уровень энергопотребления, наблюдаемый при номинальной частоте и штатном VID, не более чем вдвое.

Поэтому попутно с температурой мы проанализировали и то, как растёт потребление разогнанного Core i7-8700K. Для этого было выполнено измерение тока, проходящего через разъём EPS 12V на материнской плате, от которого питается процессорный VRM, при разгоне CPU до различных частот с различным напряжением. Результаты представлены в следующей таблице.

Подумать только, разгон приводит к тому, что потребление 95-ваттного (формально) процессора Core i7-8700K может переваливать за 250 Вт! Но стоит иметь в виду, что реальное потребление старшего Coffee Lake при максимальной нагрузке в номинальном режиме составляет далеко не 95 Вт. В реальности при работе с AVX/AVX2-инструкциями этот процессор расходует существенно больше электроэнергии - на уровне 135-140 Вт. Поэтому 250 Вт при разгоне - вполне допустимый режим, который не должен внушать опасения по поводу быстрой деградации полупроводникового кристалла.

До этого момента мы говорили об оверклокинге, имея в виду полную стабильность процессора в программах, которые активно работают с AVX/AVX2-инструкциями. Среди игровых и офисных приложений таких встречается очень немного, но современные творческие программы, в первую очередь связанные с обработкой изображений или видео, векторные инструкции задействуют достаточно активно. Однако пользуются такими программами далеко не все, поэтому в дополнение к проделанному тестированию мы решили посмотреть, насколько разгонится скальпированный Core i7-8700K, если его стабильность проверять не в LinX 0.8.0, а более поверхностно - в Prime95 29.3 с отключённой поддержкой AVX/AVX2.

Ослабленные требования к стабильности, естественно, позволили получить более высокую частоту. При выставленном в BIOS материнской платы напряжении 1,45 В процессор смог проходить часовое тестирование в Prime95 на частоте 5,2 ГГц.

Температура ядер не превышала 90 градусов, потребление процессора, по данным системного мониторинга, оставалось в пределах 170-175 Вт.

Этот результат позволяет применить для скальпированного процессора Core i7-8700K комбинированный разгон со снижением частоты при активации AVX/AVX2-инструкций. Соответствующая опция поддерживается в BIOS материнских плат на базе набора логики Intel Z370, поэтому «плавающий» разгон до 5,0-5,2 ГГц - вполне допустимый рабочий режим для скальпированного Core i7-8700K.

А это значит, что без каких-либо дополнительных финансовых затрат в наших руках оказался аналог процессоров Core i7-8700K Ultra Edition , которые распространяет немецкий энтузиаст Der 8auer через магазин caseking .de .

В частности, для Core i7-8700K Ultra Edition обещается стабильная работоспособность на частоте 5,2 ГГц в приложениях без поддержки AVX, и это ровно то же самое, что получилось после скальпирования имеющегося в нашей лаборатории образца Core i7-8700K. Конечно, нужно понимать, что успех разгона того или иного экземпляра CPU зачастую зависит от везения. Но очень похоже, что Coffee Lake, если ему обеспечить должный теплоотвод, действительно может предложить на 100-200 МГц лучший разгон по сравнению с Kaby Lake, несмотря на увеличенное в полтора раза количество вычислительных ядер. И это значит, что на покорение символической 5-гигагерцевой вершины может рассчитывать практически любой оверклокер, способный смириться с утратой гарантии на процессор и готовый решиться на скальпирование процессора и вживление в него эффективного термоинтерфейса на основе жидкого металла.

Доброго времени суток.

Один из минусов ноутбуков (особенно игровых) - это их компактность и слабая система охлаждения, в следствии чего часто наблюдается перегрев. И довольно много вопросов поступает насчет того, как вообще определить перегрев, и какую температуру процессора считать нормальной, а какую повышенной и начинать беспокоиться.

Вообще, однозначный ответ на этот вопрос дать нельзя. Дело в том, что только за последние лет 10-15 были выпущены тысячи различных моделей ноутбуков, используются различные поколения процессоров и пр. Не зная конкретную модель процессора - нельзя сказать, что считается нормой, а что нет.

В этой статье постараюсь ответить на подобные вопросы и покажу, как можно самостоятельно найти критическую температуру для именно своего процессора.

Как определить температуру процессора и какую считать нормальной

Для начала определим текущее значение температуры.

Сделать это можно, например, зайдя в BIOS или воспользовавшись специальными утилитами (рекомендую второй вариант, т.к. пока вы дойдете до BIOS, и закроете игры и другие ресурсоемкие приложения - температура изменится, и ее актуальность не будет значимой).

Лучшие утилиты для определения характеристик компьютера/ноутбука -

Например, мне импонирует AIDA 64.

Открыв AIDA 64, и зайдя во вкладку "Компьютер/Датчики" вы можете узнать температуру процессора, жесткого диска, видеокарты и пр. компонентов. См. скриншот ниже.

Прим. : в моем случае температура процессора составляет 38°C.

Чтобы получить более точный показатель температуры - не закрывая AIDA 64, запустите игру и поиграйте в течении 10-15 минут, затем сверните игру при помощи кнопки "Win" (либо сочетания кнопок Alt+Tab ) и посмотрите показатель температуры.

В принципе, сейчас мы получили пару сухих цифр (одну - без нагрузки, вторую - под нагрузкой), которые пока ни о чем нам не говорят.

Следующий шаг, который нужно сделать - это узнать конкретную модель процессора , установленную в ноутбуке. Сделать это можно при помощи всё той же AIDA 64 - откройте вкладку "Суммарная информация" и посмотрите строку "Тип ЦП".

Суммарная информация о компьютере - смотрим ТИП ЦП. Модель процессора - Intel i5-7200U

Далее необходимо найти спецификацию и тех. характеристики конкретно вашего процессора на официальных сайтах Intel или AMD (ссылки привожу ниже). Для быстрого поиска - просто введите модель процессора в поисковую строку на сайте.

  1. Intel -
  2. AMD -

Собственно, именно в тех. характеристиках, обычно, производитель всегда указывает критические температуры для своих линеек процессоров. Пару примеров привел ниже. Для тех же Intel i5, i7 7-8-го поколений - критическим значением температуры является - 100°C; для AMD A10, A12 - 90°C.

Причем, отмечу, предел для Intel в 100°C - не означает, что температура в 90°C будет нормальной для Intel. При приближении к этой критической отметке - ноутбук, скорее всего, либо начнет жестко тормозить, либо просто зависнет и выключится. Это значение, больше нужно, чтобы знать границу и при приближении к ней - принять вовремя меры.

ИТОГО

В среднем "по больнице" считается нормой (для современных ноутбуков), если ваш процессор нагревается до температуры:

  • 30-45°C - в режиме простоя, при нагрузке на ЦП менее 20% (т.е. нагрузка слабая, например, чтение веб-страничек, соц. сети, просмотр фильмов и сериалов);
  • 50-65°C - в режиме серьезной нагрузки (т.е. в играх, когда рендерите видео, работаете в различных тяжелых редакторах и т.д.);
  • сразу отмечу, что некоторые игровые ноутбуки рассчитаны на температуру до 80-85°C и вполне нормально работают при этом режиме годами.

Вообще, все, что выше 80°C - я бы рекомендовал к осмотру и диагностике. Дело в том, что нагрев до такой температуры не сказывается благоприятно на компонентах и деталях на мат. плате (в качестве примера: рука уже не терпит температуру свыше 60°C!) .

Стоит отметить, что на сайтах производителей ноутбуков, также иногда указываются допустимые температуры. Подобную информация можно найти и на них.

Добавлю, что чаще всего перегреваются процессоры от AMD (ничего личного, простая статистика).

1) При появлении признаков перегрева (сильный шум от вентиляторов, горячий корпус, выход обжигающего воздуха из корпуса устройства) - выключить устройство, и дать остыть.

О том, как можно почистить ноутбук от пыли самостоятельно, см. в этой статье:

3) Поменять термопасту/термо-прокладку. Если сами не знаете, как это делается и что это такое - воспользуйтесь компьютерными сервисами. В среднем, один раз в 2-4 года рекомендуется это делать.

4) Для ноутбуков в продаже есть спец. охлаждающие подставки. Такая подставка способна снизить температуру на 10-15°C и более (величина снижения зависит от конструкции ноутбука и его степени нагрева).

5) Если подставку покупать не хотите, то под ноутбук можно что-нибудь подложить (книгу, например): чтобы увеличить пространство между столом и вентиляционными отверстиями.

6) Кстати, рекомендуется работать за ноутбуком на чистых, твердых и ровных поверхностях (а работа на диване, например, мешает часто нормальной циркуляции воздуха внутри устройства (мягкая ткань перегораживает вентиляционные отверстия)).

7) Снизьте параметры графики и системных требований в игре, проведите оптимизацию и чистку системы, удалите старые неиспользуемые программы и "мусор". Благодаря этому, нагрузку на ЦП можно снизить, т.к. ему ненужно будет выполнять "лишнюю" и ненужную работу. Пару ссылок на свои статьи привожу ниже.

На этом всё, удачи!