Корректор мощности блока питания. С низким стартовым током: корректоры коэффициента мощности от компании STM

Корректор коэффициента мощности

Основные понятия

Развитие и широкое распространение импульсных методов преобразования электрической энергии привело к появлению маломощных бытовых и промышленных электроприборов с искажённой формой или не нулевым фазовым сдвигом потребляемого от сети тока (лампы дневного света, электродвигатели, телевизоры, компьютеры, микроволновые печи и пр.). Резкое увеличение числа таких потребителей сказывается на их электромагнитной совместимости и энергосистемах в целом . В 2001году МЭК приняла стандарт IEC–1000–3–2, согласно которому любая электротехническая продукция мощностью более 200 ватт, подключаемая к сети переменного тока, должна иметь активный характер входного сопротивления, то есть коэффициент мощности () должен быть равен единице.

Для повышения в настоящее время используют пассивные и активные корректоры коэффициента мощности (ККМ). Первые применяют при неизменных нагрузках, путём введения компенсирующих реактивностей (например, конденсаторы для ламп дневного света), вторые обладают более широким спектром применения. Рассмотрим упрощенную схему активного корректора, которая приведена на рис.6.1.

Рисунок 6.1 – Упрощенная схема активного ККМ

На этом рисунке R 1 , R 2 – датчик входного напряжения (ДН), R 3 – датчик тока (ДТ). Индуктивность L, ключ VT1, диод VD1 и конденсатор С 1 образуют импульсный повышающий стабилизатор напряжения. Работа ККМ поясняется эпюрами рис.6.1б. Замыкание транзистора VТ1 происходит в момент времени, когда напряжение на выходе датчика тока ДТ становится равным нулю (т. е. при нулевом токе в индуктивности L). Размыкание транзистора VТ1 происходит в момент времени, когда линейно нарастающее напряжение с датчика тока становится равным изменяющемуся по синусоидальному закону напряжению с датчика напряжения ДН. После размыкания транзистора ток в индуктивности начинает спадать, индуктивность разряжается на нагрузку через диод VD1, ДТ и сеть. При нулевом значении тока транзистор вновь замыкается. Далее процесс повторяется. Частота коммутации ключа превышает частоту сети и составляет десятки…сотни килогерц. Усредненный ток i ср в индуктивности и потребляемый от сети, повторяет форму напряжения сети. По высокой частоте работы ключа сеть шунтируют конденсатором С 2 (обычно это доли мкФ). Можно дополнительно ввести обратную связь по выходному напряжению и обеспечить предварительную стабилизацию. Очевидно, что работа ККМ возможна, если амплитуда входного напряжения меньше напряжения на конденсаторе С 1 (с учётом отклонений). Для напряжения сети 220В (амплитуда 311В), выходное напряжение ККМ принимают равным 380…400В.

Разновидности ККМ

В рассмотренной выше схеме ККМ используется, так называемый, метод граничного управления. Он наиболее прост в реализации, но размыкание ключа производится при значительном токе, что связано с существенными потерями мощности.

Известны и другие методы управления ключом в ККМ :

· управление по пиковому значению тока

· метод разрывных токов с ШИМ.

· управление по среднему значению тока.

Сущность этих методов поясняется эпюрами рис.6.2 а, б, в соответственно.

Рисунок 6.2 – Управление ключом в ККМ

Управление по пиковому значению тока (рис. 6.2.а) привлекательно по малым обратным помехам (в сеть) и малым броскам тока через ключ, но имеет место изменение частоты и жесткая коммутация силового диода.

Управление методом разрывных токов с ШИМ (рис. 6.2.б). Реализация этого метода близка к методу граничного управления, но отличается постоянной частотой коммутации. Достоинством является простая схема управления, но разрывные токи дросселя становятся дополнительным источником помех. Управление по среднему значению тока (рис. 6.2.в) производится при неизменной частоте, а наличие интегратора для усреднения тока повышает помехозащищённость системы управления. Обычно пиковое значение пульсаций тока дросселя находится в пределах 20% от среднего значения и именно этот метод управления применяют в корректорах на мощности более 300 ватт.

Cуществуют не только однофазные, но и трёхфазные корректоры коэффициента мощности. Силовой контур трёхфазного ККМ с одним управляемым ключом приведен на рис. 6.3 , а на рис. 6.4 и 6.5 показаны эпюры, поясняющие работу.

Рисунок 6.3 – Силовой контур трёхфазного ККМ

Рисунок 6.4 – Эпюры токов реакторов L1,L2,L3 трёхфазного ККМ

Рисунок 6.5 – Эпюры основных процессов трёхфазного ККМ

Управление ключом производится аналогично однофазному корректору.

В рассмотренных схемах ККМ, последний пропускает всю мощность нагрузки. Это последовательный корректор и его элементная база сдерживает увеличение выходной мощности. ККМ может быть построен и по ампердобавочной (рис.1.19) схеме – включение активного фильтра тока параллельно нагрузке. В этом случае, установленная мощность элементов активного фильтра, предназначенного для компенсации только мощности искажений от высших гармоник входного тока, будет на уровне, определяемом коэффициентом гармоник этого тока (например, 0,3 для трёхфазной мостовой схемы и 0,15 для двенадцатифазной схемы выпрямления) . Структурная схема такого ККМ приведена на рис. 6.6. Принцип компенсации высших гармоник в кривой тока, потребляемого от сети, поясняется эпюрами рис. 6.7. Для наглядности форма тока нагрузки принята прямоугольной. Корректор формирует разность между гармоникой тока сети и фактическим током нагрузки

Включение в сеть переменного тока нелинейных нагрузок, например, светильников с газоразрядными лампами, управляемых электродвигателей, импульсных источников питания приводит к тому, что потребляемый этими устройствами ток имеет импульсный характер с большим процентом содержания высоких гармоник. Из-за этого могут возникать проблемы электромагнитной совместимости при работе различного оборудования. Также это приводит к снижению активной мощности сети.

В целях предотвращения подобного негативного воздействия на питающие сети в Европе и США действует стандарт МЭК IEC 1000-3-2 , определяющий нормы по гармоническим составляющим потребляемого тока и коэффициенту мощности для систем электропитания мощностью более 50 Вт и всех типов осветительного оборудования. Начиная с 80-х годов прошлого века и по сей день, эти нормы последовательно ужесточаются, что вызвало необходимость принятия специальных мер и подтолкнуло разработчиков оборудования к разработке различных вариантов схем, обеспечивающих повышение коэффициента мощности.

Начиная с 80-х годов прошлого столетия, в вышеупомянутых странах начали активно разрабатываться и использоваться микросхемы, на базе которых можно легко создать простые корректоры коэффициента мощности для выпрямительных устройств и электронных балластов.

В Советском Союзе, а позднее и в Российской Федерации, подобных ограничений для потребителей электроэнергии не вводилось. По этой причине вопросам повышения коэффициента мощности не уделялось достаточного внимания в технической литературе. В последние годы ситуация несколько изменилась, во многом благодаря наличию импортных электронных компонентов, применение которых позволяет создавать схемы активных корректоров, надежных в работе и недорогих по стоимости.

Мощность искажения и обобщенный коэффициент мощности

Негативное влияние на питающую сеть определяется двумя составляющими: искажение формы тока питающей сети и потребление реактивной мощности. Степень влияния потребителя на питающую сеть зависит от его мощности.

Искажение формы тока обусловлено тем, что ток на входе вентильного преобразователя несинусоидальный (рисунок 1). Несинусоидальные токи создают на внутреннем сопротивлении питающей сети несинусоидальные падения напряжения, вызывая искажения формы питающего напряжения. Несинусоидальные напряжения сети раскладываются в ряд Фурье на нечетные синусоидальные составляющие высших гармоник. Первая - основная (та, которая должна быть в идеале), третья, пятая и т.д. Высшие гармоники оказывают крайне негативное влияние на многих потребителей, заставляя их применять специальные (зачастую весьма дорогостоящие) меры по их нейтрализации.

Рис. 1.

Потребление реактивной мощности приводит к отставанию тока от напряжения на угол (рисунок 2). Реактивную мощность потребляют выпрямители, использующие однооперационные тиристоры, задерживающие момент включения относительно точки естественной коммутации, что вызывает отставание тока от напряжения. Но еще больше реактивной мощности потребляют асинхронные электродвигатели, имеющие преимущественно индуктивный характер нагрузки. Это влечет колоссальные потери полезной мощности, за которую, к тому же, никто не хочет платить - бытовые электросчетчики считают только активную мощность.

Рис. 2.

Для описания воздействия преобразователя на питающую сеть введено понятие полной мощности:

, где:

- эффективное значение первичного напряжения,

- эффективное значение первичного тока,

, - эффективные значения напряжения и тока первичной гармоники,

Эффективные значения напряжений и тока высших гармоник.

Если первичное напряжение синусоидальное - , тогда:

,

,

ϕ 1 - угол сдвига фаз между синусоидальным напряжением и первой гармоникой тока.

N - мощность искажения, вызванная протеканием в сети токов высших гармоник. Средняя за период мощность, обусловленная этими гармониками равна нулю, т.к. частоты гармоник и первичного напряжения не совпадают.

Высшие гармоники токов вызывают помехи в чувствительном оборудовании и дополнительные потери от вихревых токов в сетевых трансформаторах.

Для вентильных преобразователей вводится понятие коэффициента мощности χ, характеризующее эффект реактивной мощности и мощности искажений:

,

- коэффициент искажения первичного тока.

Таким образом, очевидно, что коэффициент мощности зависит от угла запаздывания тока относительно напряжения и величины высших гармоник тока.

Методы повышения коэффициента мощности

Существует несколько способов уменьшения негативного влияния преобразователя на питающую сеть. Вот некоторые из них:

    Использование многоступенчатого фазового управления (рисунок 3).

Рис. 3.

Применение выпрямителя с отводами от трансформатора приводит к увеличению числа пульсаций за период. Чем больше ответвлений от трансформатора, тем больше число пульсаций за период, тем ближе форма входного тока к синусоидальной. Существенным недостатком этого метода является высокая стоимость и габариты трансформатора с достаточным количеством ответвлений (для достижения эффекта их должно быть больше, чем на рисунке). Изготовление моточного элемента такой сложности - весьма непростая задача, плохо поддающаяся автоматизации - отсюда и цена. А если разрабатываемый источник вторичного электропитания мелкосерийный, то такой способ однозначно неприемлем.

Рис. 4.

    Увеличения фазности выпрямителя. Метод приводит к увеличению числа пульсаций за период. Недостатком метода является очень сложная конструкция трансформатора, дорогой и громоздкий выпрямитель. Кроме того, не у всех потребителей имеется трехфазная сеть.

    Использование корректоров коэффициента мощности (ККМ) . Существуют электронные и неэлектронные ККМ. В качестве неэлектронных ККМ широко применяются электромагнитные компенсаторы реактивной мощности - синхронные двигатели, вырабатывающие в сеть реактивную мощность. Очевидно, в силу понятных причин, такие системы непригодны для бытового потребителя. Электронные ККМ - система схемотехнических решений, призванная увеличить коэффициент мощности - является, пожалуй, самым оптимальным решением для бытового потребления.

Принцип работы ККМ

Основная задача ККМ - сведение к нулю отставания потребляемого тока от напряжения в сети при сохранении синусоидальной формы тока. Для этого необходимо отбирать от сети ток не короткими интервалами, а на всем периоде работы. Мощность, отбираемая от источника, должна оставаться постоянной даже в случае изменения напряжения сети. Это значит, что при снижении напряжения сети ток нагрузки должен быть увеличен, и наоборот. Для этих целей пригодны преобразователи с индуктивным накопителем и передачей энергии на обратном ходу.

Методы коррекции можно условно разделить на низкочастотные и высокочастотные. Если частота работы корректора намного выше частоты питающей сети - это высокочастотный корректор, в противном случае - низкочастотный.

Рассмотрим принцип работы типового корректора мощности (рисунок 5). На положительной полуволне, в момент перехода сетевого напряжения через ноль, открывается транзистор VT1, ток протекает по цепи L1-VD3-VD8. После запирания транзистора VT1, дроссель начинает отдавать накопленную в нем энергию, через диоды VD1 и VD6 в фильтрующий конденсатор и нагрузку. При отрицательной полуволне процесс имеет аналогичный характер, только работают другие пары диодов. В результате применения такого корректора ток потребления имеет псевдосинусоидальный характер, а коэффициент мощности достигает значения 0,96…0,98. Недостатком такой схемы являются большие габариты, обусловленные применением низкочастотного дросселя.

Рис. 5.

Повышение частоты работы ККМ позволяет сократить габариты фильтра (рисунок 6). При открытом силовом ключе VT1 ток в дросселе L1 линейно нарастает - при этом диод VD5 заперт, а конденсатор С1 разряжается на нагрузку.

Рис. 6.

Затем транзистор запирается, напряжение на дросселе L1 отпирает диод VD5 и дроссель отдает накопленную энергию конденсатору, одновременно питая нагрузку (рисунок 7). В простейшем случае схема работает с постоянным рабочим циклом. Существуют способы увеличения эффективности коррекции путем динамического изменения рабочего цикла (т.е. путем согласования цикла с огибающей напряжения сетевого выпрямителя).

Рис. 7. Формы напряжений и токов высокочастотного ККМ: а) с переменной частотой коммутации, б) с постоянной частотой коммутации

Микросхемы для построения высокоэффективных корректоров от STMicroelectronics

Учитывая возможности современной электронной индустрии, высокочастотные ККМ являются оптимальным выбором. Интегральное исполнение всего корректора мощности или его управляющей части стало, по сути, стандартом. В настоящее время существует большее многообразие микросхем управления для построения схем ККМ, выпускаемых различными производителями. Среди всего этого многообразия стоит обратить внимание на микросхемы L6561/2/3, выпускаемые компанией STMicroelectronics (www.st.com).

L6561, L6562 и L6563 - серия микросхем, специально спроектированных инженерами компании STMicroelectronics для построения высокоэффективных корректоров коэффициента мощности (табл. 1).

Таблица 1. Микросхемы корректоров коэффициента мощности

Наименование Напряжение
питания, В
Ток
включения, мкА
Ток потребления в активном режиме, мА Ток потребления в ждущем режиме, мА Выходной ток смещения, мкА Время нарастания тока силового ключа, нс Время спада тока силового ключа, нс
L6561 11…18 50 4 2,6 -1 40 40
L6562 10,3…22 40 3,5 2,5 -1 40 30
L6563 10,3…22 50 3,8 3 -1 40 30

На основе L6561/2/3 можно построить недорогой, но эффективный корректор (рисунок 8). За счет встроенной системы упреждающего управления, разработчикам удалось достигнуть обеспечения высокой точности регулирования выходного напряжения (1,5%), контролируемого встроенным усилителем рассогласования.

Рис. 8.

Предусмотрена возможность взаимодействия с DC/DC-преобразователем, подключаемым к корректору. Это взаимодействие состоит в отключении преобразователя микросхемой (если он поддерживает такую возможность) при возникновении неблагоприятных внешних условий (перегрев, перенапряжение). С другой стороны, преобразователь тоже может инициировать включение и выключение микросхемы. Встроенный драйвер позволяет управлять мощными MOSFET- или IGBT-транзисторами. Согласно утверждению производителя, на основе LP6561/2/3 можно реализовать источник питания, мощностью до 300 Вт.

В отличие от аналогов других производителей, LP6561/2/3 снабжены специальными цепями, понижающими проводимость искажений входного тока, возникающих при достижении входным напряжением нулевого значения. Основная причина этих помех - «мертвая зона», возникающая при работе диодного моста, когда все четыре диода оказываются закрытыми. Пара диодов, работающих на положительную полуволну, оказываются закрытыми из-за смены полярности питающего напряжения, а другая пара еще не успела открыться из-за собственной барьерной емкости. Этот эффект усиливается при наличии фильтрующего конденсатора, расположенного за диодным мостом, который, при смене полярности питания, сохраняет некоторое остаточное напряжение, не позволяющее диодам вовремя открываться. Таким образом, очевидно, что ток в эти моменты не протекает, его форма искажается. Применение новых контроллеров ККМ позволяет в значительной степени сократить время «мертвой зоны», уменьшая тем самым искажения.

В некоторых случаях было бы очень удобно контролировать выходное напряжение, поступающее на DC/DC-преобразователь при помощи ККМ. L6561/2/3 позволяют осуществлять такой контроль, получивший название «tracking boost control». Для этого достаточно установить резистор между выводом TBO и GND.

Стоит отметить, что все три микросхемы совместимы друг с другом по выводам. Это может значительно упростить разработку печатной платы устройства.

Итак, можно выделить следующие особенности микросхем L6561/2/3:

    настраиваемая защита от перенапряжения;

    сверхнизкий ток запуска (менее 50 мкА);

    низкий ток покоя (менее 3 мА);

    широкий предел входных напряжений;

    встроенный фильтр, повышающий чувствительность;

    возможность отключения от нагрузки;

    возможность управления выходным напряжением;

    возможность взаимодействия непосредственно с преобразователем.

Заключение

В настоящее время существуют строгие требования к соблюдению мер безопасности и экономичности современных электронных устройств. В частности, при разработке современных импульсных источников питания необходимо учитывать официально принятые стандарты. IEC 1000-3-2 является стандартом для любого мощного импульсного источника питания, поскольку определяет нормы по гармоническим составляющим потребляемого тока и коэффициенту мощности для систем электропитания, мощностью более 50 Вт и всех типов осветительного оборудования. Наличие корректора коэффициента мощности помогает удовлетворению требований этого стандарта, т.е. его наличие в мощном источнике питания является простой необходимостью. L6561/2/3 - оптимальный выбор для построения эффективного и одновременно недорогого корректора коэффициента мощности.

Получение технической информации, заказ образцов, поставка — e-mail:

О компании ST Microelectronics

С. КОСЕНКО, г. Воронеж

Хорошо известно, что активная мощность, потребляемая нагрузкой от источника переменного тока, далеко не всегда равна произведению эффективного значения тока на эффективное значение напряжения. Многие считают, что это относится только к нагрузкам с реактивной составляющей сопротивления, создающей фазовый сдвиг между законами изменения тока и напряжения. При подсчете мощности реактивность нагрузки учитывают еще одним сомножителем - коэффициентом мощности, равным косинусу угла сдвига фазы (cos Фи). Чем меньше этот сдвиг, тем ближе к единице этот коэффициент.

Однако к уменьшению коэффициента мощности приводит и нелинейность нагрузки, причем это явление со сдвигом фазы не связано. Типичный пример - обычный выпрямитель. Потребляемый им ток имеет импульсный характер, протекая только в интервалах времени, когда мгновенное значение переменного входного напряжения больше напряжения на сглаживающем конденсаторе и диод (или диоды) выпрямителя открыт. Амплитудное и эффективное значения этого тока намного больше среднего тока нагрузки, а коэффициент мощности значительно ниже единицы. Чтобы увеличить этот коэффициент, необходимо максимально приблизить форму потребляемого тока к синусоидальной.


Схема одного из вариантов устройства, выполняющего эту операцию и называемого корректором коэффициента мощности, изображена на рис. 1. Он построен на специализированной микросхеме-контроллере L6562 фирмы STMicroelectronics. Полезно ознакомиться с описанием предшественника этого контроллера L6561 и их сравнительными данными .

ККМ представляет собой однотактный импульсный повышающий преобразователь напряжения с накоплением энергии в магнитопроводе трансформатора Т1 и последующей ее передачей в нагрузку.

Основные технические характеристики
Входное переменное (50 Гц) напряжение, В.........220±20 %
Коэффициент мощности, % .......96
Коэффициент гармонических искажений входного тока, % ..............8
Выходное постоянное напряжение, В.................400
Мощность нагрузки, Вт...........80
КПД, %.........................96

Нa вход преобразователя через фильтр высокочастотных помех (двухобмоточный дроссель L1 с конденсаторами CI- С4) и выпрямительный мост VD1 поступает пульсирующее с частотой 100 Гц напряжение U„. Конденсатор С5 сравнительно небольшой емкости не сглаживает пульсации выпрямленного напряжения, а лишь замыкает цепь протекания высокочастотных составляющих входного тока преобразователя Il, уменьшая их проникновение в сеть и влияние импеданса сети на работу ККМ.

После включения прибора в сеть начинают заряжаться через резисторы R5 и R7 конденсаторы С10 и С11 Контроллер DA1 заработает, как только напряжение на конденсаторах и, следовательно, между его выводами 8 и 6 достигнет 13 В (в случае снижения этого напряжения до 10,3 В он снова перейдет в нерабочее состояние с потреблением тока не более 90 мкА). Под действием импульса, вырабатываемого внутренним генератором пусковых импульсов (ГПИ) A3, на выходе триггера D2 будет установлен высокий логический уровень, а на выходе усилителя А6 (выв. 7 микросхемы) - напряжение, достаточное для открывания транзистора VT1. Через обмотку I трансформатора Т1 и открытый транзистор потечет линейно нарастающий ток.
Транзистор будет закрыт, как только триггер D2 перейдет в состояние с низким уровнем на выходе, а это случится в момент срабатывания компаратора А5, сравнивающего напряжение, снимаемое с резистора R13 - датчика тока транзистора VT1, с напряжением на выходе перемножителя А4. Так как ток в обмотке трансформатора, как и во всякой индуктивности, не может прекратиться мгновенно, после закрывания транзистора он потечет, спадая, через диод VD4, заряжая конденсатор С13 и питая нагрузку. В интервалах времени, когда транзистор VT1 открыт и ток через диод VD4 не течет, заряд, накопленный в конденсаторе С13, расходуется на питание нагрузки.
Спад тока в обмотке I трансформатора Т1 до нуля зафиксирует узел А1 (обнаружитель нулевого значения тока, ОНЗТ), для его работы на выв. 5 контроллера подано напряжение с обмотки II трансформатора. В этот момент триггер D2 вновь будет установлен в состояние с высоким уровнем на выходе, а транзистор VT1 открыт. Далее процесс повторяется периодически.

Участки графика тока обмотки I трансформатора Т1, изображенные на рис. 2 линиями розового цвета, соответствуют протеканию тока через транзистор VT1, а линиями голубого цвета - через диод VD4 На том же рисунке имеется временная диаграмма изменения напряжения U, на затворе коммутирующего транзистора. В реальнос¬ти отношение частоты коммутации к частоте входного напряжения значительно больше изображенного на рис. 2 Элементы преобразователя обычно выбирают так, что частота следования его импульсов не опускается ниже 40 кГц. Так как частота пусковых импульсов, генерируемых узлом А1, не превышает 13 кГц, на работу ККМ в установившемся режиме этот узел не влияет.

Напряжение на выходе перемножителя А4 пропорционально мгновенному значению напряжения Uвх, часть которого поступает на выв. 3 контроллера через делитель из резисторов R1-R3. В результате форма огибающей вершин импульсов тока, показанная на рис. 2 пунктиром, совпадает с формой входного напряжения. По такому же закону изменяется среднее значение потребляемого тока Icp, что и требуется для выполнения ККМ своей основной функции. Из графиков на рис. 2 следует (это можно показать и аналитически), что в рассматриваемом случае фиксирована длительность интервалов времени, соответствующих открытому состоянию транзистора VT1. Частота коммутации, изменяясь периодически с удвоенной частотой сетевого напряжения, зависит также от его амплитуды и от тока нагрузки. Индуктивность первичной обмотки трансформатора выбирают такой, чтобы частота следования импульсов тока не выходила за пределы 40. .200 кГц. Кроме того, магнитопровод трансформатора не должен насыщаться под действием импульса тока максимальной амплитуды (Ilmax) - в установившемся режиме приблизительно в три раза больше тока нагрузки ККМ

Фактически трансформатор Т1 использован как накопительный дроссель. Почти вся энергия, поступившая в его магнитное поле за время, когда коммутирующий транзистор открыт, поступает в нагрузку при закрытом тран зисторе. Лишь небольшая часть этой энергии с помощью вторичной обмотки ответвляется на формирование сигнала нулевого значения тока и на питание контроллера по цепи R6C8VD2VD3. Упомянутые выше резисторы R5 и R7 обеспечивают ток, достаточный лишь для запуска контроллера.

Стабилизация выходного напряжения ККМ (UВЫХ) достигается тем, что на второй вход перемножителя А4 контроллера поступает сигнал рассогласования, полученный в результате сравнения части выходного напряжения, снимаемого с резистивного делителя R14-R17, с формируемым внутри контроллера образцовым напряжением 2,5 В. В результате при

колебаниях тока нагрузки и амплитуды входного напряжения амплитуда огибающей импульсов тока изменяется таким образом, что выходное напряжение поддерживается равным заданному (400 В).

Усилитель сигнала рассогласования А2 охвачен цепью отрицательной обратной связи (ЦОС), схема и параметры которой выбирают так, чтобы была обеспечена динамическая устойчивость стабилизатора при достаточно быстрой реакции на дестабилизирующие факторы. В простейшем случае ЦОС - это просто конденсатор С9 (см. рис. 1). уменьшающий усиление сигнала рассогласования с повышением его частоты при достаточно большом коэффициенте передачи постоянной составляющей. Например, чтобы ослабить составляющую с частотой F в N раз, емкость конденсатора обратной связи должна быть равна

Например, при F = 100 Гц и N = 1000 требуется конденсатор емкостью приблизительно 1,6 мкФ.

Однако стабилизатор с простейшей ЦОС бывает склонен к возникновению автоколебаний из-за малого запаса по фазе на частоте единичного усиления. Если фазовый сдвиг на этой частоте достигает 180°, обратная связь из отрицательной превращается в положительную со всеми вытекающими неприятными последствиями.

Чтобы устранить это явление и обеспечить достаточный запас по фазе, последовательно с конденсатором обратной связи включают резистор. Именно такая ЦОС R7C8 показана на рис. 1 в качестве основной, а конденсатор С9 и требующийся в некоторых случаях резистор R9 изображены пунктиром В контроллере L6562 предусмотрена защита от превышения допустимого значения выходного напряжения. Принцип ее работы поясняет фрагмент схемы контроллера на рис. 3. Элементы А2, А4, А6, конденсатор С7 и резисторы R8, R14-R17 те же, что и на рис. 1. Имеются два вида защиты - статическая и динамическая. Первую обеспечивает компаратор А7. Он изменяет состояние, если напряжение на выходе усилителя А2 падает ниже 2,25 В, что соответствует превышению заданного выходного напряжения ККМ на 10 %. Сигнал с выхода компаратора через элемент ИЛИ D3 поступит на вход блокировки усилители А6, в результате чего транзистор VT1 (см. рис 1) будет немедленно закрыт и останется закрытым, пока за счет разрядки конденсатора С13 током нагрузки напряжение на выходе ККМ не упадет до допустимого уровня.

Динамическая защита предохраняет от скачков выходного напряжения, вызванных, например, резким сбросом нагрузки. Ее действие основано на том, что в установившемся режиме ток зарядки-разрядки конденсатора ЦОС (С7) и практически равный ему выходной ток усилителя А2 близки к нулю.


При резком изменении выходного напряжения приращение тока, текущего через резисторы R14 и R15, вызывает равное ему увеличение выходного тока усилителя, заряжающего конденсатор. Усилитель А2 имеет специальный выход контроля выходного тока, соединенный со входом компаратора А8. Если значение тока, втекающего в выв. 2 контроллера, превысит 37 мкА, будет включено так называемое "мягкое торможение" - ограничение длительности импульсов на выв. 7, приводящее к постепенному снижению выходного напряжения. Если же втекающий ток превысит 40 мкА, произойдет "резкое торможение" с полной блокировкой усилителя А6. Благодаря гистерезисным свойствам компаратора А8 нормальная работа будет восстановлена только после уменьшения втекающего тока до 10 мкА. Потребление тока контроллером по цепи питания, равное в рабочем режиме 4 мА, уменьшается до 1,4 мА при срабатывании защиты.

Кроме контроллера L6562, в описанный ККМ можно устанавливать аналогичные микросхемы других изготовителей, например. МС34262, IL34262. Диод VD4 должен быть быстродействующим с рабочей частотой не менее 200 кГц и способным выдерживать пиковые значения коммутируемого тока. Конденсаторы С1- С5 - пленочные или керамические на напряжение не менее 630 В. Дроссель L1 - ДФ90ПЦ или ДФ110ПЦ от телевизоров серий ЗУСЦТ-5УСЦТ.

Магнитопровод трансформатора Т1 - Ш6*6 из феррита М2000НМ1 со стандартным каркасом, все неиспользуемые выводы которого удалены. Обмотку I (73 витка) наматывают жгутом из десяти проводов ПЭВ-2 0,12 в четыре слоя, избегая сползания и проваливания витков верхнего слоя в нижний


У щечек каркаса. Каждый слой и обмотку в целом изолируют лакотканью или другим изоляционным материалом, способным выдержать импульсы амплитудой более 400 В. Измеренная индуктивность обмотки I готового трансформатора - 650 мкГн. Обмотка II - шесть витков провода ПЭВ-2 0,12, намотанных "вразрядку" по всей ширине каркаса.

Для создания в магнитопроводе немагнитного зазора подготавливают две вставки из стеклотекстолита толщиной 0,25 мм. Собирая трансформатор, их вставляют между торцами крайних стержней половин магнитопровода, после чего магнитопровод склеивают. На собранный трансформатор надевают экран - короткозамкнутый виток из полосы медной фольги шириной 10 мм. Это необходимо для снижения уровня излучаемых устройством помех. С общим проводом виток не соединяют.

Эксплуатация ККМ показала, что температура магнитопровода трансформатора Т1 достигает приблизительно 70 "С. Чтобы уменьшить нагрев, желательно вместо магнитопровода из феррита 2000НМ1 применить изготовленный из феррита 2500НМСI или аналогичного зарубежного. Также реко мендуется устанавливать в ККМ оксидные конденсаторы с максимальной рабочей температурой 105 °С.

Преобразовательная техника

Введение

В последние десятилетия количество электроники, используемой в домашних условиях, в офисах и на производстве, резко увеличилось, и в большинстве устройств применяются импульсные источники питания. Такие источники генерируют гармонические и нелинейные искажения тока, которые отрицательно влияют на проводку электросети и электроприборы, подключенные к ней. Это влияние выражается не только в разного рода помехах , сказывающихся на работе чувствительных устройств, но и в перегреве нейтральной линии. При протекании в нагрузках токов со значительными гармоническими составляющими, не совпадающими по фазе с напряжением, ток в нейтральном проводе (который при симметричной нагрузке, практически, равен нулю) может увеличится до критического значения.

Международная электротехническая комиссия (МЭК) и Европейская организация по стандартизации в электротехнике (CENELEC) приняли стандарты IEC555 и EN60555, устанавливающие ограничения на содержание гармоник во входном токе вторичных источников электропитания, электронных нагрузках люминесцентных ламп, драйверах двигателей постоянного тока и аналогичных приборах.

Один из эффективных способов решения этой задачи - применение корректоров коэффициента мощности PFC (Power Factor Correction). На практике это означает, что во входную цепь практически любого электронного устройства с импульсными преобразователями необходимо включать специальную PFC-схему, обеспечивающую снижение или полное подавление гармоник тока.

Коррекция коэффициента мощности

Типичный импульсный источник питания состоит из сетевого выпрямителя, сглаживающего конденсатора и преобразователя напряжения. Такой источник потребляет мощность только в те моменты, когда напряжение, подаваемое с выпрямителя на сглаживающий конденсатор, выше напряжения на нем (конденсаторе), что происходит в течение примерно четверти периода. В остальное время источник не потребляет мощности из сети, так как нагрузка питается от конденсатора. Это приводит к тому, что мощность отбирается нагрузкой только на пике напряжения, потребляемый ток имеет форму короткого импульса и содержит набор гармонических составляющих (см. рис. 1).

Вторичный источник питания, имеющий коррекцию коэффициента мощности, потребляет ток с малыми гармоническими искажениями, равномернее отбирает мощность от сети, имеет коэффициент амплитуды (отношение амплитудного значения тока к его среднеквадратичному значению) ниже, чем у некорректированного источника. Коррекция коэффициента мощности снижает среднеквадратическое значение потребляемого тока, что позволяет подключать к одному выводу электросети больше разных устройств, не создавая в ней перегрузок по току (см. рис. 2).

Коэффициент мощности

Коэффициент мощности (Power Factor PF) - параметр, характеризующий искажения, создаваемые нагрузкой (в нашем случае - источником вторичного электропитания) в сети переменного тока. Существует два вида искажений - гармонические и нелинейные. Гармонические искажения вызываются нагрузкой реактивного характера и представляют собой сдвиг фаз между током и напряжением. Нелинейные искажения вносятся в сеть «нелинейными» нагрузками. Эти искажения выражаются в отклонении формы волны тока или напряжения от синусоиды. В случае гармонических искажений коэффициентом мощности считается косинус разности фаз между током и напряжением или отношение активной мощности к полной мощности, потребляемой из сети. Для нелинейных искажений коэффициент мощности равен доле мощности первой гармонической составляющей тока в общей мощности, потребляемой устройством. Его можно считать показателем того, насколько равномерно устройство потребляет мощность от электросети.

В общем случае коэффициент мощности - это произведение косинуса угла разности фаз между напряжением и током на косинус угла между вектором основной гармоники и вектором полного тока. К такому определению приводят рассуждения, приводимые ниже. Действующий ток, протекающий в активной нагрузке, имеет вид:

I 2 эфф =I 2 0 +I 2 1эфф +SI 2 nэфф,

где I 2 nэфф - постоянная составляющая (в случае синусоидального напряжения равна нулю), I 2 1эфф - основная гармоника, а под знаком суммы - младшие гармоники. При работе на реактивную нагрузку в этом выражении появляется реактивная составляющая, и оно принимает вид:

I 2 эфф =I 2 0 +(I 2 1эфф(P) +I 2 1эфф(Q))+SI 2 nэфф. Активная мощность - это среднее за период значение мощности, выделяемой на активной нагрузке.

Ее можно представить в виде произведения действующего напряжения на активную составляющую тока P=U эфф Ч I 1эфф(P) . Физически это энергия, выделяющаяся в виде тепла в единицу времени на активном сопротивлении. Под реактивной мощностью понимают произведение действующего напряжения на реактивную составляющую тока: Q=U эфф Ч I 1эфф(Q) . Физический смысл - это энергия, которая перекачивается два раза за период от генератора к нагрузке и два раза - от нагрузки к генератору. Полной мощностью называется произведение действующего напряжения на общий действующий ток: S=U эфф Ч I эфф(общ) . На комплексной плоскости его можно представить как сумму векторов P и Q, откуда видна зависимость I 2 =I 1эфф(общ) cos j, где j - угол между векторами P и Q, который также характеризует разность фаз между током и напряжением в цепи.

Основываясь на вышесказанном, выводим определение для коэффициента мощности:

PF=P/S=(I 1эфф cos j)/(I эфф(общ)).

Стоит заметить, что отношение (I 1эфф)/(I эфф(общ)) есть косинус угла между векторами, соответствующими действующему значению общего тока и действующему значению его первой гармоники. Если обозначить этот угол q, то выражение для коэффициента мощности принимает вид: PF=cos j Ч cos q. Задача коррекции коэффициента мощности состоит в том, чтобы приблизить к нулю угол разности фаз j между напряжением и током, а также угол q гармонических искажений потребляемого тока (или, другими словами, максимально приблизить форму кривой тока к синусоиде и максимально компенсировать фазовый сдвиг).

Коэффициент мощности выражается в виде десятичной дроби, значение которой лежит в пределах от 0 до 1. Его идеальное значение - единица (для сравнения, типичный импульсный источник питания без коррекции имеет значение коэффициента мощности около 0,65), 0,95 - хорошее значение; 0,9 - удовлетворительное; 0,8 - неудовлетворительное. Применение коррекции коэффициента мощности может увеличить коэффициент мощности устройства с 0,65 до 0,95. Вполне реальны и значения в пределах 0,97…0,99. В идеальном случае, когда коэффициент мощности равен единице, устройство потребляет из сети синусоидальный ток с нулевым фазовым сдвигом относительно напряжения (что соответствует полностью активной нагрузке с линейной вольтамперной характеристикой).

Пассивная коррекция коэффициента мощности

Пассивный метод коррекции чаще всего применяется в недорогих малопотребляющих устройствах (где не предъявляется строгих требований к интенсивности младших гармоник тока). Пассивная коррекция позволяет достичь значения коэффициента мощности около 0,9. Это удобно в случае, когда источник питания уже разработан, остается только создать подходящий фильтр и включить его в схему на входе.

Пассивная коррекция коэффициента мощности состоит в фильтрации потребляемого тока при помощи полосового LC-фильтра. Этот метод имеет несколько ограничений. LC-фильтр может быть эффективен как корректор коэффициента мощности только в случае, если напряжение, частота и нагрузка изменяются в узком интервале значений . Так как фильтр должен работать в области низких частот (50/60 Гц), его компоненты имеют большие габариты, массу и малую добротность (что не всегда приемлемо). Во-первых , количество компонентов при пассивном подходе намного меньше и, следовательно - время наработки на отказ больше, и во вторых , при пассивной коррекции создается меньше электромагнитных и контактных помех, чем при активной.

Активная коррекция коэффициента мощности

Активный корректор коэффициента мощности должен удовлетворять трем условиям:

1) Форма потребляемого тока должна быть как можно ближе к синусоидальной и - «в фазе» с напряжением. Мгновенное значение тока, потребляемого от источника, должно быть пропорционально мгновенному напряжению сети.

2) Отбираемая от источника мощность должна оставаться постоянной даже в случае изменения напряжения сети. Это значит, что при снижении напряжения сети ток нагрузки должен быть увеличен, и наоборот.

3) Напряжение на выходе PFC-корректора не должно зависеть от величины нагрузки. При снижении напряжения на нагрузке должен быть увеличен ток через нее, и наоборот.

Существует несколько схем, при помощи которых можно реализовать активную коррекцию коэффициента мощности. Наиболее популярна в настоящее время «схема преобразователя с повышением» (boost converter). Эта схема удовлетворяет всем требованиям, предъявляемым к современным источникам питания. Во-первых , она позволяет работать в сетях с различными значениями питающего напряжения (от 85 до 270 В) без ограничений и каких-либо дополнительных регулировок. Во-вторых , она менее восприимчива к отклонениям электрических параметров сети (скачки напряжения или кратковременное его отключение). Еще одно достоинство этой схемы - более простая реализации защиты от перенапряжений. Упрощенная схема «преобразователя с повышением» приведена на рис. 3.

Принцип работы

Стандартный корректор коэффициента мощности представляет собой AD/DC-преобразователь с широтно-импульсной (PWM) модуляцией. Модулятор управляет мощным (обычно MOSFET) ключом, который преобразует постоянное или выпрямленное сетевое напряжение в последовательность импульсов, после выпрямления которых на выходе получают постоянное напряжение.

Временные диаграммы работы корректора показаны на рис. 4. При включенном MOSFET-ключе ток в дросселе линейно нарастает - при этом диод заперт, а конденсатор С2 разряжается на нагрузку. Затем, когда транзистор запирается, напряжение на дросселе «открывает» диод и накопленная в дросселе энергия заряжает конденсатор С2 (и одновременно питает нагрузку). В приведенной схеме (в отличие от источника без коррекции) конденсатор С1 имеет малую емкость и служит для фильтрации высокочастотных помех. Частота преобразования составляет 50...100 кГц. В простейшем случае схема работает с постоянным рабочим циклом. Существуют способы увеличения эффективности коррекции динамическим изменением рабочего цикла (согласованием цикла с огибающей напряжения от сетевого выпрямителя).

Схема «преобразователя с повышением» может работать в трех режимах : непрерывном , дискретном и так называемом «режиме критической проводимости ». В дискретном режиме в течение каждого периода ток дросселя успевает «упасть» до нуля и через некоторое время снова начинает возрастать, а в непрерывном - ток, не успев достигнуть нуля, снова начинает возрастать. Режим критической проводимости используется реже, чем два предыдущих. Он сложнее в реализации. Его смысл в том, что MOSFET открывается в тот момент, когда ток дросселя достигает нулевого значения. При работе в этом режиме упрощается регулировка выходного напряжения.

Выбор режима зависит от требуемой выходной мощности источника питания. В устройствах мощностью более 400 Вт используется непрерывный режим, а в маломощных - дискретный. Активная коррекция коэффициента мощности позволяет достичь значений 0,97...0,99 при коэффициенте нелинейных искажений THD (Total Harmonic Distortion) в пределах 0,04...0,08.

В.Дьяконов, А.Ремнев, В.Смердов

В последнее время на рынке бытовой и офисной радиоэлектронной аппаратуры (РЭА) все чаще появляется техника, в состав источников питания которой входят новые узлы - корректоры мощности (КМ). В статье рассмотрены вопросы применения КМ, принцип их работы, диагностика и ремонт.

Большинство современных источников питания РЭА представляют собой импульсные источники вторичного электропитания с бестрансформаторным мостовым выпрямителем и емкостным фильтром. Наряду с достоинствами (высокий КПД, хорошие массогабаритные показатели) они имеют сравнительно низкий коэффициент мощности (0,5...0,7) и повышенный уровень гармоник потребляемого от сети тока (>30%). Форма тока, потребляемого такими источниками, показана на рис. 1 сплошными линиями.

Несинусоидальная форма тока приводит к возникновению электромагнитных помех, засоряющих сеть переменного тока, и сбою в работе другой РЭА.

Вышеописанные источники питания, являясь однофазными потребителями, при большом количестве электронной аппаратуры и нерациональном ее подключении к трехфазной питающей сети, могут вызвать перекос фаз. При этом часть РЭА будет работать при повышенном напряжении, а другая - при пониженном, что всегда нежелательно. Для устранения перекоса фаз в трехфазную сеть, как правило, вводится нулевой провод,который выравнивает напряжение во всех фазах. Однако при импульсном характере потребляемого тока и большом количестве его гармонических составляющих возможна перегрузка нулевого провода. Это связано с тем, что его сечение обычно в 2...2,5 раза меньше, чем у фазных проводов. По технике безопасности запрещается защищать этот провод плавкими предохранителями или автоматами защиты сети. Очевидно, что при неблагоприятных условиях возможно перегорание нулевого провода и, как следствие, - возникновение перекоса фаз.

В связи с этим все более ужесточаются требования по электромагнитной совместимости вторичных импульсных источников с питающей сетью и резко ограничивается уровень высших гармоник потребляемого от сети тока для всех однофазных потребителей. В настоящее время новые европейские стандарты требуют улучшения формы потребляемого тока только при мощностях потребителей свыше 200 Вт, а в ближайшее время эти требования будут введены и для потребителей с мощностью до 50...70 Вт.

В настоящее время используют ся пассивная и активная коррекции формы потребляемого тока.

Пассивные цепи коррекции,состоящие из индуктивностей и емкостей, обеспечивают коэффициент мощности, который показывает отличие формы потребляемого тока от синусоиды (не хуже 0,9...0,95). При конструктивной простоте и надежности пассивные цепи коррекции имеют относительно большие габариты и чувствительны к изменениям частоты питающего напряжения и величины тока нагрузки.

Более перспективным является использование активных КМ, которые формируют на входе импульсного источника питания синусоидальный потребляемый ток, совпадающий по фазе и частоте с питающим напряжением. Такие КМ имеют небольшие габариты за счет работы с частотами преобразования в несколько десятков килогерц и обеспечивают коэффициент мощности 0,95...0,99.

Сформировать на входе мостового выпрямителя импульсного источника питания синусоидальный ток можно с помощью одной из схем преобразователей постоянного напряжения в постоянное при использовании принципа следящей высокочастотной широтноимпульсной модуляции (ШИМ). При этом чаще всего применяются повышающие преобразователи , обладающие следующими преимуществами:
. силовой транзистор имеет соединение истока с общим проводом, что облегчает построение схемы его управления;
. максимальное напряжение на транзисторе равно выходному напряжению;
. наличие индуктивности, включенной последовательно с нагрузкой, обеспечивает фильтрацию высокочастотных составляющих.

Рассмотрим принцип работы активного КМ, реализованного на повышающем преобразователе со следящей ШИМ (рис. 2).

Вначале рассмотрим работу схемы КМ без узлов умножения (УМ) и датчика напряжения нагрузки (ДНН), роль которых описана ниже. Опорное напряжение синусоидальной формы, получаемое с датчика выпрямленного напряжения (ДВН), поступает на один из входов схемы управления (СУ) силовым ключом, реализованном на МДП-транзисторе VT. На второй вход СУ поступает сигнал, пропорциональный току ключа. Пока напряжение с ДВН больше напряжения, формируемого датчиком тока (ДТ), транзистор открыт и в индуктивности накапливается энергия (рис. 3 а). Диод VD на этом интервале (Tи) закрыт.

При равенстве сигналов, поступающих на СУ, ключ закрывается и энергия, накопленная в индуктивности, передается в нагрузку. После того, как за время tП ток в индуктивности спадет до нуля, снова включается транзистор. Частота переключений транзистора во много раз превышает частоту питающей сети, что позволяет существенно уменьшить размеры индуктивности. При этом за полупериод сетевого напряжения огибающая амплитудных значений тока индуктивности (рис. 3 б) изменяется по синусоидальному закону. Аналогично изменяется и среднее значение тока. В результате этого потребляемый ток имеет синусоидальную форму и совпадает по фазе с питающим напряжением.

Однако величина напряжения на нагрузке существенно зависит от изменений входного напряжения и тока нагрузки. Для стабилизации напряжения нагрузки в СУ дополнительно вводят цепь обратной связи по этому напряжению. Возможность получения синусоидальной формы потребляемого тока с одновременной стабилизацией напряжения нагрузки реализуется при помощи аналогового умножения (узел УМ) сигналов, поступающих с ДВН и с ДНН.
Полученный таким образом дополнительный сигнал в этом случае становится опорным напряжением для СУ.

Рассмотренный принцип управления КМ используется при мощностях нагрузки до 300 Вт. При больших мощностях необходимо формировать более гладкую кривую изменения потребляемого тока. Это можно осуществить, когда ток в индуктивности не спадает до нуля (рис. 3 в и 3 г). Если в КМ относительно малой мощности транзистор вступает в работу при достижении током индуктивности нулевого значения, то в мощных КМ - при заданном значении этого тока.


Рассмотрим работу КМ на примере практической схемы, представленной на рис. 4. Схема управления реализована на специализированной микросхеме L6560, структурная схема которой приведена на рис. 5,


А назначения выводов - в табл. 1.

Напряжение ДВН, формируемое резистивным делителем R1 R2, поступает на выв. 3 микросхемы L6560. Конденсатор С1 на выходе выпрямителя выполняет функции ВЧ-фильтра, а не сглаживающего конденсатора, как в традиционных схемах. Поэтому его величина не превышает сотен нанофарад - единиц микрофарад при мощностях в нагрузке 100...200 Вт. Дополнительная фильтрация ВЧ-помех на выв. 3 осуществляется конденсатором С2.
Резистор R5 выступает в роли датчика тока ключа, напряжение которого через ВЧ-фильтр R4 С4 поступает на выв. 4 микросхемы. Силовой ключ управляется сигналом, получаемым с выв. 7. Учитывая особенности работы ключей КМ (большой динамический диапазон амплитудных значений тока), чаще всего в качестве них используются МДП-транзисторы. При больших частотах преобразования, характерных для КМ, эти транзисторы обладают малыми динамическими потерями и легко управляются непосредственно микросхемами . Для уменьшения вероятности возбуждения схемы в цепь затвора МДП-транзистора вводят низкоомный резистор .

С резистивного делителя R6 R7 снимается сигнал обратной связи по выходному напряжению и подается на выв. 1. Для уменьшения влияния импульсных помех, возникающих в выходной цепи, между выв. 1 и 2 микросхемы включен интегрирующий конденсатор С3, емкость которого составляет сотни нанофарад.

При включении КМ в сеть в первый момент питание микросхемы осуществляется через резистор R3. Как только КМ выходит на рабочий режим, с дополнительной обмотки катушки индуктивности L снимается напряжение, которое с одной стороны используется как напряжение питания микросхемы, а с другой - является сигналом определения нулевого тока индуктивности.

На выходе КМ обязательно присутствует фильтрующий конденсатор С5, так как энергия в нагрузку передается импульсами. Емкость этого конденсатора, как правило,определяется из расчета 1,5...2 мкФ на 1 Вт мощности в нагрузке.

В последнее время ведущими фирмами выпущено большое количество интегральных микросхем для СУ корректоров мощности. Такое количество микросхем связано с дополнительными функциями, которые они способны выполнять, хотя принцип построения КМ на этих микросхемах практически одинаков. К дополнительным функциям относятся:
. защита от перенапряжения при переходных процессах;
. защита от возникновения повторных запусков;
. защита от повреждения при запусках на замкнутую нагрузку;
. улучшение гармонического состава при переходе через нуль сетевого напряжения;
. блокировка при пониженном напряжении питания;
. защита от случайных выбросов входного напряжения.

Корректор мощности, как правило, не является самостоятельным устройством, а входит в состав импульсных источников питания. Для получения необходимых уровней и полярностей выходных напряжений такие источники питания содержат преобразователи. В связи с этим разработчики микросхем часто объединяют в одном корпусе два каскада схем управления: собственно для КМ, а также для преобразователя напряжения.

В табл. 2 приведены основные параметры микросхем управления различных фирм, предназначенных для вторичных импульсных источников питания с коррекцией мощности.

Основным критерием работы КМ является уровень выходного напряжения. При переменном напряжении питающей сети 220 В выходное напряжение КМ постоянно и должно составлять 340.360 В. Если напряжение менее 300 В, то это говорит о неисправности. Для дальнейшей проверки КМ необходим осциллограф. С его помощью прове ряют осциллограммы в характерных узлах КМ при номинальной нагрузке, в качестве которой может быть подключен эквивалентный резистор.

Напряжение на затворе транзистора. При исправной микросхеме ее выходное напряжение представляет собой прямоугольные импульсы высокой частоты, намного превышающей частоту сети. При исправном МДП-транзисторе разница в напряжении на выходе микросхемы и затворе транзистора практически равна нулю. Если затвор транзистора пробит, появляется разность этих напряжений в несколько вольт.

Напряжение на истоке транзистора, которое является напряже нием, снимаемым с датчика тока. При нормальной работе КМ форма напряжения должна быть похожей на форму тока ключа, показанной на рис. 3. Отличие будет свидетельствовать о возможной неисправности МДП-транзистора. Диагностика их неисправностей подробно изложена в .

Напряжение на ДВН. Форма этого напряжения представляет собой выпрямленную синусоиду. При нормально работающем выпрямителе возможна неисправность резистивного делителя.

Для проверки самой микросхемы дополнительно необходим источник постоянного напряжения с регулировкой напряжения от 3 до 15 В. Это напряжение подается на входы цепи питания микросхемы при отключенном от сети КМ. При изменении напряжения регулируемого источника контролируется выходное напряжение микросхемы. Пока напряжение питания меньше 12..13 В, выходное напряжение равно нулю. При большем напряжении на выходе микросхемы появляется выходной сигнал с уровнем, отслеживающим питающее напряжение. При уменьшении питающего напряжения ниже 7 В этот выходной сигнал скачком уменьшается до нуля. При отсутствии такой закономерности весьма вероятно, что неисправна микросхема.

Литература
1. Бачурин В. В., Дьяконов В.П., Ремнев А.М., Смердов В.Ю. Схемотехника устройств на мощных полевых транзисторах. Справочник. М.: Радио и связь, 1994.
2. В.Дьяконов, А.Ремнев, В.Смердов. Особенности ремонта узлов радиоэлектронной аппаратуры на МДП-транзисторах. Ремонт&Сервис, 1999, № 11, с. 57-60.
[email protected]